Application of visible/near-infrared hyperspectral imaging with convolutional neural networks to phenotype aboveground parts to detect cabbage Plasmodiophora brassicae (clubroot)

克鲁布罗特 高光谱成像 主成分分析 卷积神经网络 生物 园艺 模式识别(心理学) 计算机科学 人工智能 芸苔属
作者
Lei Feng,Baohua Wu,Shuangshuang Chen,Chu Zhang,Yong He
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:121: 104040-104040 被引量:8
标识
DOI:10.1016/j.infrared.2022.104040
摘要

Cabbage often suffers from various diseases as one of the most favorable vegetables in China. Among all the diseases, clubroot is one of the most severe diseases. Due to the ability of hyperspectral technology to reveal hidden changes in plant physiology, it can be used to assess the often nonspecific damage caused by root pathogens. This study explored the feasibility of detecting clubroot by using hyperspectral imaging (HSI) combined with convolutional neural network (CNN). A highly susceptible cabbage variety of clubroot disease, ECD-05 was used in this study. Infected samples were inoculated by the injection vaccination method. To explore the influence of soil types on clubroot detection, three types of soil, including nutrient soil, mixed soil and red clay were studied. Hyperspectral images were acquired six weeks after inoculation of plant with the disease. Qualitative analysis by score images formed by principal component analysis (PCA) indicated differences existed between healthy and infected samples. Convolutional neural networks (CNN) and support vector classification (SVC) models using the object-wise spectra of different treatment of cabbage were built. Analysis of variance (ANOVA) was conducted on each wavelength of healthy and infected samples to explore the spectral regions related to the samples' healthy status. Vegetation index-anthocyanin reflectance index (ARI) and physiological reflex index (PhRI) successfully distinguished infected samples from samples. CNN model obtained good performance on predicting object-wise spectra with the classification accuracy of the training set and the test set over 85%. This study demonstrates the feasibility of cabbage clubroot detection by phenotyping of aboveground parts using near-infrared HSI combined with CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
cfyoung完成签到,获得积分10
2秒前
Vert完成签到,获得积分20
3秒前
posh完成签到 ,获得积分10
5秒前
7秒前
Vert发布了新的文献求助10
7秒前
Nicole完成签到 ,获得积分10
7秒前
7秒前
迅速大山完成签到,获得积分10
8秒前
9秒前
清晨的阳光完成签到,获得积分10
9秒前
蓝鲸鲸发布了新的文献求助10
9秒前
Jiaowen发布了新的文献求助10
10秒前
zhong发布了新的文献求助10
11秒前
安文完成签到,获得积分10
12秒前
12秒前
多啦2642完成签到,获得积分10
13秒前
ayeon发布了新的文献求助30
13秒前
勤恳依柔完成签到,获得积分10
14秒前
15秒前
16秒前
温暖的德地完成签到,获得积分10
16秒前
16秒前
Orange应助SY采纳,获得10
17秒前
17秒前
17秒前
sumo发布了新的文献求助10
17秒前
我是老大应助科研小白采纳,获得10
18秒前
八十完成签到,获得积分10
19秒前
科研通AI6应助现代苑睐采纳,获得10
20秒前
GJT0427gjt完成签到 ,获得积分10
20秒前
蕾蕾发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
wqy发布了新的文献求助10
22秒前
Fen发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317879
求助须知:如何正确求助?哪些是违规求助? 4460213
关于积分的说明 13877759
捐赠科研通 4350555
什么是DOI,文献DOI怎么找? 2389481
邀请新用户注册赠送积分活动 1383568
关于科研通互助平台的介绍 1353015