A deep learning crop model for adaptive yield estimation in large areas

可解释性 作物产量 产量(工程) 理论(学习稳定性) 估计 人工智能 机器学习 深度学习 计算机科学 农业工程 数学 统计 工程类 农学 材料科学 系统工程 冶金 生物
作者
Yilin Zhu,Sensen Wu,Mengjiao Qin,Zhiyi Fu,Yi Gao,Yuanyuan Wang,Zhenhong Du
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:110: 102828-102828 被引量:2
标识
DOI:10.1016/j.jag.2022.102828
摘要

Estimating crop yield in large areas is essential for ensuring food security and sustainable development. Accounting for variations in the temporal cumulative growth of crops across regions (i.e., spatial heterogeneity of crop growth) can improve the accuracy of yield estimation in large areas. However, current spatial heterogeneity learning methods have limitations such as cutting off inherent correlations among regions, difficulty obtaining accurate prior knowledge, and high subjectivity. Therefore, this study proposed a novel deep learning adaptive crop model (DACM) to accomplish adaptive high-precision yield estimation in large areas, which emphasizes adaptive learning of the spatial heterogeneity of crop growth based on fully extracting crop growth information. Results showed that the DACM achieved an average root mean squared error (RMSE) of 4.406 bushels·acre−1 (296.304 kg ha−1), with an average coefficient of determination (R2) of 0.805. Compared with other state-of-the-art machine learning and deep learning methods, DACM improves the large-area yield estimation accuracy and performs more robustly in space. The analyses on attention values and estimation stability demonstrate that DACM can learn the spatial heterogeneity of crop growth and adopt adaptive strategies to optimize yield estimation. Considering both performance stability and interpretability, DACM provides a practical approach for estimating large-area crop yields by adaptively learning the spatial heterogeneity patterns of crop growth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu完成签到,获得积分10
刚刚
赘婿应助Ziwu采纳,获得30
刚刚
呆萌怜珊发布了新的文献求助10
1秒前
乐乐应助lydiaabc采纳,获得10
1秒前
科研通AI5应助曾绍炜采纳,获得10
1秒前
2秒前
123566完成签到,获得积分10
2秒前
ccl发布了新的文献求助10
2秒前
yuanyuan完成签到,获得积分10
2秒前
驴橘子窈完成签到,获得积分10
3秒前
lbh完成签到,获得积分10
3秒前
3秒前
工藤新一完成签到,获得积分10
3秒前
fangqian0000完成签到,获得积分10
3秒前
rrrrrr发布了新的文献求助20
4秒前
李雷完成签到 ,获得积分10
4秒前
4秒前
BenQiu完成签到,获得积分10
4秒前
5秒前
Ula完成签到,获得积分10
5秒前
fangqian0000发布了新的文献求助10
6秒前
JianYugen完成签到,获得积分0
7秒前
FashionBoy应助张张磊采纳,获得10
7秒前
罗rr发布了新的文献求助10
7秒前
8秒前
田様应助ccl采纳,获得10
8秒前
小易发布了新的文献求助10
8秒前
Akim应助汪马军采纳,获得10
8秒前
加勒比海带丝完成签到,获得积分10
9秒前
yue发布了新的文献求助10
9秒前
Allen发布了新的文献求助10
10秒前
wyu完成签到,获得积分10
10秒前
10秒前
Owen应助天津科技大学采纳,获得10
10秒前
深情安青应助怡然雁凡采纳,获得10
11秒前
11秒前
燕子关注了科研通微信公众号
12秒前
13秒前
研友_VZG7GZ应助Katherine采纳,获得20
13秒前
1234完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789101
求助须知:如何正确求助?哪些是违规求助? 3334213
关于积分的说明 10267996
捐赠科研通 3050485
什么是DOI,文献DOI怎么找? 1674041
邀请新用户注册赠送积分活动 802435
科研通“疑难数据库(出版商)”最低求助积分说明 760607