In Your Eyes: Modality Disentangling for Personality Analysis in Short Video

模式 计算机科学 一致性(知识库) 模态(人机交互) 人工智能 人格 特征(语言学) 机器学习 钥匙(锁) 心理学 社会科学 计算机安全 语言学 社会心理学 哲学 社会学
作者
Xiangguo Sun,Bo Liu,Liya Ai,Danni Liu,Qing Meng,Jiuxin Cao
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (3): 982-993 被引量:11
标识
DOI:10.1109/tcss.2022.3161708
摘要

With the dramatic growth of various short video platforms, users are more likely to share their social stream online and make their social connections stronger. To better understand their preferences, personality analysis has attracted more attention. Unlike single modal data such as text or images, which is hard to comprehensively uncover one's personal traits, personality analysis on short video is verified to be much more accurate but also more challenging because of the huge gap between incompatible data modalities. We have noticed that the key problem is how to disentangle the complexity from multimodal data to find their consistency and uniqueness. In this article, we propose a novel video analysis framework for personality detection with visual, acoustic, and textual neural networks. Specifically, to enhance our model's sensitivity to personality detection, we first propose three deep learning channels to learn modal features. The framework can not only extract each modal feature but also learn time-varying pattern via a temporal alignment network. To identify the consistency and uniqueness across multiple modalities, we creatively propose to maximize the similarity of common information learned by a shared neural network across multiple modalities and extend the distance of exclusive information learned by private networks of different modalities. Extensive experiments on the real-world dataset demonstrate that our model can outperform existing baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金蛋蛋完成签到 ,获得积分10
刚刚
一一发布了新的文献求助10
刚刚
刚刚
Orange应助明芬采纳,获得10
1秒前
六尺巷完成签到,获得积分10
1秒前
hotongue发布了新的文献求助30
1秒前
2秒前
张张发布了新的文献求助10
2秒前
MC番薯应助李大壮采纳,获得10
2秒前
白三烯小童鞋完成签到,获得积分10
2秒前
领导范儿应助耍酷的碧琴采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
5秒前
852应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
LaTeXer应助科研通管家采纳,获得30
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI5应助灼灼朗朗采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
許能完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
7秒前
8秒前
斯文败类应助一一采纳,获得10
9秒前
FLOR完成签到,获得积分10
9秒前
在水一方完成签到,获得积分0
10秒前
10秒前
lalala完成签到,获得积分10
10秒前
急需文献开题的研一肿瘤学牛马完成签到,获得积分10
10秒前
巧克力手印完成签到,获得积分10
10秒前
11秒前
孙佳婷完成签到 ,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4751416
求助须知:如何正确求助?哪些是违规求助? 4096942
关于积分的说明 12675670
捐赠科研通 3809520
什么是DOI,文献DOI怎么找? 2103259
邀请新用户注册赠送积分活动 1128428
关于科研通互助平台的介绍 1005349