A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on Wi-Fi fingerprinting

计算机科学 可扩展性 地理坐标系 比例(比率) 人工神经网络 建筑 数据挖掘 平面布置图 人工智能 模式识别(心理学) 数据库 地图学 地理 考古
作者
Jaehoon Cha,Eng Gee Lim
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:120: 108624-108624 被引量:27
标识
DOI:10.1016/j.asoc.2022.108624
摘要

Conventional application of deep neural networks (DNNs) to multi-building and multi-floor indoor localization is based on pure regression of three-dimensional location coordinates (e.g., longitude, latitude and altitude (i.e., floor height)), classification of location labels (e.g., building, floor and room information), or hybrid classification/regression of labels and coordinates (e.g., building and floor information and two-dimensional location coordinates), which, however, does not take into account an innate hierarchical auxiliary information (e.g., building-¿floor-¿location) of indoor localization data. Such conventional application of DNNs faces scalability issues in case of large-scale indoor localization where the numbers of buildings and floors are large. Inserting classification tasks as auxiliary networks into a regression neural network, we propose a new framework called a hierarchical auxiliary deep neural network (HADNN), which not only address the scalability issues with an increasing number of classes but also could further reduce the hierarchical information error. In HADNN, hierarchical auxiliary information of given data are provided and used during the training phase. As there are two possible hierarchical information cases in indoor localization data: (1) given only floors and (2) given both buildings and floors, we propose two architectures: one utilizing only floor information and the other taking both building and floor information. At test phase, HADNN predicts building, floor and location coordinate at the same time. Experimental results show that the architecture of HADNN achieves better performance of a coordinate regression task and require a smaller number of parameters than the pure two-dimensional location coordinates regression model. In addition, HADNN does not require the training data and coarse classes (e.g., building and floor information) at test phase while previous methods still require the training data to obtain location coordinates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助良月二十三采纳,获得10
1秒前
ma发布了新的文献求助10
1秒前
2秒前
夏从寒发布了新的文献求助10
2秒前
王中秀完成签到,获得积分10
3秒前
4秒前
5秒前
明理如冰发布了新的文献求助10
5秒前
6秒前
6秒前
woiwxx发布了新的文献求助10
8秒前
9秒前
222发布了新的文献求助10
10秒前
李爱国应助良月二十三采纳,获得10
10秒前
研友_ZGRqKn完成签到,获得积分10
10秒前
康康发布了新的文献求助10
11秒前
12秒前
脑洞疼应助蓝星采纳,获得30
12秒前
内向姿完成签到,获得积分10
12秒前
蝶舞青春发布了新的文献求助10
13秒前
科研通AI5应助呜呜呜采纳,获得10
13秒前
潇洒的盼望完成签到 ,获得积分10
14秒前
材料小王子完成签到 ,获得积分10
14秒前
14秒前
张大大发布了新的文献求助10
15秒前
学医的杨同学完成签到,获得积分10
16秒前
woiwxx完成签到,获得积分10
16秒前
16秒前
QL关闭了QL文献求助
16秒前
但大图完成签到 ,获得积分10
19秒前
19秒前
CodeCraft应助百里酚蓝采纳,获得10
21秒前
xy关闭了xy文献求助
22秒前
充电宝应助路漫漫123采纳,获得10
22秒前
24秒前
在水一方应助疯大爷采纳,获得10
24秒前
28秒前
pluto应助彩色的雨兰采纳,获得10
28秒前
希望天下0贩的0应助lin123采纳,获得10
29秒前
dhdafwet完成签到,获得积分10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
Strutts and the Arkwrights, 1758-1830 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836946
求助须知:如何正确求助?哪些是违规求助? 3379179
关于积分的说明 10507869
捐赠科研通 3099037
什么是DOI,文献DOI怎么找? 1706667
邀请新用户注册赠送积分活动 821161
科研通“疑难数据库(出版商)”最低求助积分说明 772472