Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis

医学 神经组阅片室 放射科 无线电技术 接收机工作特性 介入放射学 曲线下面积 冠状动脉疾病 置信区间 内科学 神经学 精神科
作者
Xiangnan Li,Weihua Yin,Yang Sun,Han Sung Kang,Jie Luo,Kuan Chen,Zhihui Hou,Yang Gao,Xinshuang Ren,Yitong Yu,Yunqiang An,Yan Zhang,Hongyue Wang,Bin Lü
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (6): 4003-4013 被引量:19
标识
DOI:10.1007/s00330-021-08518-0
摘要

ObjectivesTo explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA).MethodsIn this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients’ preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models’ diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI).ResultsThe training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 –0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 –0.846]).ConclusionsRadiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability.Key Points • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Austin完成签到,获得积分10
1秒前
徐小发布了新的文献求助10
2秒前
俊逸沛菡发布了新的文献求助10
2秒前
hn完成签到,获得积分10
2秒前
2秒前
许安发布了新的文献求助10
3秒前
追寻青柏完成签到,获得积分10
3秒前
3秒前
天川完成签到,获得积分10
3秒前
水虎完成签到,获得积分10
4秒前
冰魂应助chentle采纳,获得10
4秒前
杨威臣发布了新的文献求助30
5秒前
7788999发布了新的文献求助10
5秒前
nozero应助zhenpeng8888采纳,获得30
5秒前
酷酷问夏发布了新的文献求助10
6秒前
汉堡包应助嬛嬛采纳,获得10
6秒前
6秒前
Akim应助无限的谷丝采纳,获得10
6秒前
6秒前
落寞萤发布了新的文献求助30
7秒前
我是老大应助徐小采纳,获得30
7秒前
蓉儿完成签到 ,获得积分10
8秒前
深情安青应助z1z1z采纳,获得10
8秒前
小沫完成签到,获得积分10
8秒前
happy123发布了新的文献求助10
11秒前
外向语蝶发布了新的文献求助10
12秒前
今后应助科研通管家采纳,获得10
12秒前
Pothos应助科研通管家采纳,获得10
13秒前
852应助泥盆纪的鱼采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
子车茗应助科研通管家采纳,获得20
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
所所应助liweiqian1995采纳,获得10
13秒前
Singularity应助科研通管家采纳,获得10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810315
求助须知:如何正确求助?哪些是违规求助? 3354794
关于积分的说明 10372611
捐赠科研通 3071237
什么是DOI,文献DOI怎么找? 1686836
邀请新用户注册赠送积分活动 811251
科研通“疑难数据库(出版商)”最低求助积分说明 766510