A compositional analysis study of body composition and cardiometabolic risk factors

医学 超重 代谢综合征 尾声 肥胖 内科学 瘦体质量 腹内脂肪 内分泌学 线性回归 脂肪组织 生理学 内脏脂肪 胰岛素抵抗 统计 体重 数学 地震学 地质学
作者
Ian Janssen,Erin Miller,Erin Dzongowski,Kristina Miakisheva,Robert Ross
出处
期刊:Obesity [Wiley]
卷期号:30 (8): 1699-1707 被引量:4
标识
DOI:10.1002/oby.23477
摘要

Abstract Objective This cross‐sectional study used compositional data analysis (CoDA) to do the following: 1) analyze the relative associations between fat and lean tissues with cardiometabolic risk factors; and 2) estimate how these risk factors would change if equivalent mass was displaced from one tissue to another. Differences between CoDA and traditional regression were explored. Methods A total of 397 adults with overweight or obesity were studied. Body composition consisted of visceral fat, abdominal subcutaneous fat, peripheral subcutaneous fat, other fat depots, skeletal muscle, and other lean tissues. The outcomes were a continuous metabolic syndrome score (primary outcome) and eight other cardiometabolic risk factors (secondary outcomes). Associations were examined using CoDA and traditional linear regression. Results Visceral fat mass, relative to the mass of the remaining tissues, was significantly associated with the metabolic syndrome score and five of eight remaining risk factors ( p < 0.05). The relative contribution of the remaining tissues was not consistently associated with the study outcomes. Displacing equivalent mass from visceral fat into the remaining tissues was associated with meaningful decreases in the metabolic syndrome score. Regression estimates for CoDA and traditional regression differed in size and statistical significance. Conclusions These CoDA findings reinforce that excess visceral fat contributes to less‐favorable cardiometabolic risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YangyangLiu发布了新的文献求助10
1秒前
Mia完成签到,获得积分10
1秒前
21完成签到 ,获得积分10
3秒前
脑洞疼应助WF采纳,获得10
5秒前
Conan_CD完成签到,获得积分10
7秒前
AAAAA应助sss采纳,获得30
8秒前
丰知然应助kingripple采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
hanzhipad应助科研通管家采纳,获得10
8秒前
8秒前
SciGPT应助科研通管家采纳,获得30
8秒前
冰魂应助科研通管家采纳,获得20
8秒前
Ava应助科研通管家采纳,获得20
8秒前
冰魂应助科研通管家采纳,获得10
9秒前
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
星辰大海应助xingreng采纳,获得10
11秒前
老迟到的羊完成签到 ,获得积分10
11秒前
菜菜完成签到,获得积分10
13秒前
干果完成签到,获得积分20
14秒前
惠胜完成签到,获得积分10
15秒前
17秒前
科研通AI5应助Lshang采纳,获得10
18秒前
复杂的冰凡完成签到 ,获得积分10
18秒前
19秒前
bkagyin应助火星上妙梦采纳,获得10
19秒前
勤奋幻柏完成签到,获得积分10
22秒前
山山而川发布了新的文献求助10
22秒前
沉潜发布了新的文献求助10
24秒前
情怀应助lanadalray采纳,获得10
26秒前
王红玉完成签到,获得积分10
27秒前
28秒前
29秒前
于芋菊完成签到,获得积分0
29秒前
30秒前
32秒前
Z趋势完成签到,获得积分10
33秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Worked Bone, Antler, Ivory, and Keratinous Materials 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828040
求助须知:如何正确求助?哪些是违规求助? 3370356
关于积分的说明 10463000
捐赠科研通 3090294
什么是DOI,文献DOI怎么找? 1700346
邀请新用户注册赠送积分活动 817813
科研通“疑难数据库(出版商)”最低求助积分说明 770472