已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A two-stage prediction model based on behavior mining in livestream e-commerce

采购 计算机科学 步伐 卷积神经网络 深度学习 光学(聚焦) 在线广告 人工智能 机器学习 营销 万维网 业务 互联网 光学 物理 地理 大地测量学
作者
Qinping Lin,Ning Jia,Liao Chen,Shiquan Zhong,Yuance Yang,Tong Gao
出处
期刊:Decision Support Systems [Elsevier BV]
卷期号:174: 114013-114013 被引量:14
标识
DOI:10.1016/j.dss.2023.114013
摘要

Livestream e-commerce has been developing at a tremendous pace in recent years. On livestream platforms, such as Douyin, a retailer attracts viewers into the live room through short video advertising, and then streamers promote and sell products in real time. In such a scenario, an accurate prediction of traffic and sales plays an essential role in operation management, including live content strategy and inventory control. However, complex behaviors (follow, share, comment, etc.) of users and long conversion paths (from seeing the advertisement to entering the live room, and to purchasing the goods) lead to poor performance of traditional prediction methods. Additionally, few studies focus on advertising information in evaluating live room performance. Therefore, we propose a two-stage learning model for traffic and sales prediction based on behavior mining, which combines marketing models and deep learning methods. In the first stage, we integrate user behaviors before getting into the live room with short video advertising data for traffic prediction. In the second stage, based on the traditional marketing model, AIDA (Attention-Interest-Desire-Action), we design a funnel convolutional neural network (FCNN) to learn sophisticated behaviors in the live room in both time and behavior orientations, and take the predicted traffic volume as the auxiliary information for sales prediction. Extensive experiments on real-world datasets from Douyin illustrate the efficacy of our proposed method, which shows the value of fusing marketing models with deep learning techniques. Furthermore, the in-depth analysis provides practical insights into user behaviors for livestream e-commerce.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夢loey完成签到,获得积分10
刚刚
传奇3应助benhzh采纳,获得10
2秒前
tramp应助含糊的文涛采纳,获得10
4秒前
完美世界应助baozibaozi采纳,获得10
5秒前
IHateModel完成签到,获得积分10
6秒前
6秒前
黑米粥发布了新的文献求助10
11秒前
Evelyn完成签到 ,获得积分10
11秒前
Jasper应助rayy采纳,获得10
12秒前
IHateModel发布了新的文献求助30
12秒前
13秒前
14秒前
hehe完成签到 ,获得积分10
17秒前
benhzh发布了新的文献求助10
18秒前
徒tu发布了新的文献求助10
20秒前
稚气满满完成签到 ,获得积分10
21秒前
orixero应助稳重以冬采纳,获得10
22秒前
一年级完成签到,获得积分10
23秒前
23秒前
LL关闭了LL文献求助
25秒前
英姑应助马同学采纳,获得10
26秒前
英俊的铭应助zhang采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
共享精神应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
猪猪hero应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
pluto应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
猪猪hero应助科研通管家采纳,获得10
30秒前
桐桐应助科研通管家采纳,获得10
30秒前
诸葛御风应助科研通管家采纳,获得50
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI2S应助科研通管家采纳,获得30
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815203
求助须知:如何正确求助?哪些是违规求助? 3359136
关于积分的说明 10400343
捐赠科研通 3076760
什么是DOI,文献DOI怎么找? 1689995
邀请新用户注册赠送积分活动 813529
科研通“疑难数据库(出版商)”最低求助积分说明 767674