材料科学
辐射冷却
串联
发射率
紫外线
环境科学
光电子学
图层(电子)
化学工程
复合材料
纳米技术
光学
气象学
物理
工程类
作者
Meng Li,Chongjia Lin,Keqiao Li,Wei Ma,Benjamin Dopphoopha,Yang Li,Baoling Huang
出处
期刊:Small
[Wiley]
日期:2023-05-13
卷期号:19 (29)
被引量:32
标识
DOI:10.1002/smll.202301159
摘要
Radiative cooling shows great promise in eco-friendly space cooling due to its zero-energy consumption. For subambient cooling in hot humid subtropical/tropical climates, achieving ultrahigh solar reflectance (≥96%), durable ultraviolet (UV) resistance, and surface superhydrophobicity simultaneously is critical, which, however, is challenging for most state-of-the-art scalable polymer-based coolers. Here an organic-inorganic tandem structure is reported to address this challenge, which comprises a bottom high-refractive-index polyethersulfone (PES) cooling layer with bimodal honeycomb pores, an alumina (Al2 O3 ) nanoparticle UV reflecting layer with superhydrophobicity, and a middle UV absorption layer of titanium dioxide (TiO2 ) nanoparticles, thus providing thorough protection from UV and self-cleaning capability together with outstanding cooling performance. The PES-TiO2 -Al2 O3 cooler demonstrates a record-high solar reflectance of over 0.97 and high mid-infrared emissivity of 0.92, which can maintain their optical properties intact even after equivalent 280-day UV exposure despite the UV-sensitivity of PES. This cooler achieves a subambient cooling temperature up to 3 °C at summer noontime and 5 °C at autumn noontime without solar shading or convection cover in a subtropical coastal city, Hong Kong. This tandem structure can be extended to other polymer-based designs, offering a UV-resist but reliable radiative cooling solution in hot humid climates.
科研通智能强力驱动
Strongly Powered by AbleSci AI