亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks

库存控制 对偶(语法数字) 人工神经网络 计算机科学 控制(管理) 战略式采购 运筹学 运营管理 工业工程 业务 人工智能 数学 战略规划 营销 工程类 战略财务管理 文学类 艺术
作者
Lucas Böttcher,Thomas Asikis,Ioannis Fragkos
出处
期刊:Informs Journal on Computing 卷期号:35 (6): 1308-1328 被引量:12
标识
DOI:10.1287/ijoc.2022.0136
摘要

A key challenge in inventory management is to identify policies that optimally replenish inventory from multiple suppliers. To solve such optimization problems, inventory managers need to decide what quantities to order from each supplier, given the net inventory and outstanding orders, so that the expected backlogging, holding, and sourcing costs are jointly minimized. Inventory management problems have been studied extensively for over 60 years, and yet even basic dual-sourcing problems, in which orders from an expensive supplier arrive faster than orders from a regular supplier, remain intractable in their general form. In addition, there is an emerging need to develop proactive, scalable optimization algorithms that can adjust their recommendations to dynamic demand shifts in a timely fashion. In this work, we approach dual sourcing from a neural network--based optimization lens and incorporate information on inventory dynamics and its replenishment (i.e., control) policies into the design of recurrent neural networks. We show that the proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time on a regular personal computer. To demonstrate the versatility of NNCs, we also show that they can control inventory dynamics with empirical, non-stationary demand distributions that are challenging to tackle effectively using alternative, state-of-the-art approaches. Our work shows that high-quality solutions of complex inventory management problems with non-stationary demand can be obtained with deep neural-network optimization approaches that directly account for inventory dynamics in their optimization process. As such, our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
11秒前
坚果发布了新的文献求助10
12秒前
科研通AI2S应助zhukun1014采纳,获得10
17秒前
魏欣娜发布了新的文献求助10
23秒前
坚果完成签到,获得积分10
26秒前
26秒前
小马甲应助cmz采纳,获得30
27秒前
27秒前
33秒前
cmz发布了新的文献求助30
39秒前
魏欣娜发布了新的文献求助10
57秒前
砥砺前行完成签到 ,获得积分10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
胖玻璃球发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
胖玻璃球发布了新的文献求助10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
科研通AI6应助胖玻璃球采纳,获得10
2分钟前
科研通AI6应助胖玻璃球采纳,获得10
2分钟前
2分钟前
Wenqi发布了新的文献求助10
2分钟前
丘比特应助魏欣娜采纳,获得10
2分钟前
孤独剑完成签到 ,获得积分10
2分钟前
灵巧慕青完成签到,获得积分10
2分钟前
李健应助Wenqi采纳,获得10
2分钟前
2分钟前
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482409
求助须知:如何正确求助?哪些是违规求助? 4583223
关于积分的说明 14389014
捐赠科研通 4512276
什么是DOI,文献DOI怎么找? 2472800
邀请新用户注册赠送积分活动 1459037
关于科研通互助平台的介绍 1432518