Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks

库存控制 对偶(语法数字) 人工神经网络 计算机科学 控制(管理) 战略式采购 运筹学 运营管理 工业工程 业务 人工智能 数学 战略规划 营销 工程类 艺术 文学类 战略财务管理
作者
Lucas Böttcher,Thomas Asikis,Ioannis Fragkos
出处
期刊:Informs Journal on Computing 卷期号:35 (6): 1308-1328 被引量:8
标识
DOI:10.1287/ijoc.2022.0136
摘要

A key challenge in inventory management is to identify policies that optimally replenish inventory from multiple suppliers. To solve such optimization problems, inventory managers need to decide what quantities to order from each supplier, given the net inventory and outstanding orders, so that the expected backlogging, holding, and sourcing costs are jointly minimized. Inventory management problems have been studied extensively for over 60 years, and yet even basic dual-sourcing problems, in which orders from an expensive supplier arrive faster than orders from a regular supplier, remain intractable in their general form. In addition, there is an emerging need to develop proactive, scalable optimization algorithms that can adjust their recommendations to dynamic demand shifts in a timely fashion. In this work, we approach dual sourcing from a neural network--based optimization lens and incorporate information on inventory dynamics and its replenishment (i.e., control) policies into the design of recurrent neural networks. We show that the proposed neural network controllers (NNCs) are able to learn near-optimal policies of commonly used instances within a few minutes of CPU time on a regular personal computer. To demonstrate the versatility of NNCs, we also show that they can control inventory dynamics with empirical, non-stationary demand distributions that are challenging to tackle effectively using alternative, state-of-the-art approaches. Our work shows that high-quality solutions of complex inventory management problems with non-stationary demand can be obtained with deep neural-network optimization approaches that directly account for inventory dynamics in their optimization process. As such, our research opens up new ways of efficiently managing complex, high-dimensional inventory dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓦猫完成签到,获得积分20
刚刚
巧克力完成签到 ,获得积分10
1秒前
楠楠发布了新的文献求助10
1秒前
馒头酶完成签到,获得积分20
2秒前
小城故事和冰雨完成签到,获得积分10
3秒前
4秒前
orixero应助maozhehai29999采纳,获得10
4秒前
5秒前
6秒前
温医第一打野完成签到,获得积分10
6秒前
caisongliang发布了新的文献求助10
8秒前
明天要摆烂完成签到,获得积分10
9秒前
阳光明明发布了新的文献求助10
11秒前
ahhhh发布了新的文献求助10
11秒前
可靠的念真完成签到 ,获得积分10
12秒前
雪儿完成签到,获得积分20
13秒前
13秒前
艺艺完成签到,获得积分10
14秒前
echo完成签到 ,获得积分10
14秒前
迷你的无声完成签到,获得积分10
15秒前
告6人发布了新的文献求助10
16秒前
共享精神应助ahhhh采纳,获得10
18秒前
听话的代芙完成签到 ,获得积分10
18秒前
完美世界应助rrrrr采纳,获得10
18秒前
dudu完成签到,获得积分10
19秒前
叶叶叶完成签到,获得积分10
20秒前
梦里完成签到,获得积分10
20秒前
锅子发布了新的文献求助10
21秒前
haha完成签到,获得积分10
21秒前
背后的小白菜完成签到,获得积分10
22秒前
22秒前
今后应助祯果粒采纳,获得10
22秒前
思源应助77采纳,获得10
24秒前
24秒前
SciGPT应助li8888lili8888采纳,获得10
25秒前
科研通AI5应助chen采纳,获得10
28秒前
haha发布了新的文献求助10
28秒前
识途完成签到 ,获得积分10
28秒前
29秒前
29秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825489
求助须知:如何正确求助?哪些是违规求助? 3367682
关于积分的说明 10447499
捐赠科研通 3087064
什么是DOI,文献DOI怎么找? 1698409
邀请新用户注册赠送积分活动 816796
科研通“疑难数据库(出版商)”最低求助积分说明 769959