Graph-DTI: A New Model for Drug–Target Interaction Prediction Based on Heterogenous Network Graph Embedding

药物数据库 计算机科学 交互网络 图形 异构网络 图嵌入 机器学习 注意力网络 人工智能 分类器(UML) 化学信息学 数据挖掘 理论计算机科学 生物信息学 药品 医学 电信 生物化学 化学 无线网络 精神科 无线 基因 生物
作者
Yongming Cai,Xiaohan Qu,Guoxia Du,Jing Hu
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/1573409919666230713142255
摘要

In this study, we aimed to develop a new end-to-end learning model called Graph-Drug-Target Interaction (DTI), which integrates various types of information in the heterogeneous network data, and to explore automatic learning of the topology-maintaining representations of drugs and targets, thereby effectively contributing to the prediction of DTI. Precise predictions of DTI can guide drug discovery and development. Most machine learning algorithms integrate multiple data sources and combine them with common embedding methods. However, the relationship between the drugs and target proteins is not well reported. Although some existing studies have used heterogeneous network graphs for DTI prediction, there are many limitations in the neighborhood information between the nodes in the heterogeneous network graphs. We studied the drug-drug interaction (DDI) and DTI from DrugBank Version 3.0, protein-protein interaction (PPI) from the human protein reference database Release 9, drug structure similarity from Morgan fingerprints of radius 2 and calculated by RDKit, and protein sequence similarity from Smith-Waterman score.Our study consists of three major components. First, various drugs and target proteins were integrated, and a heterogeneous network was established based on a series of data sets. Second, the graph neural networks-inspired graph auto-encoding method was used to extract high-order structural information from the heterogeneous networks, thereby revealing the description of nodes (drugs and proteins) and their topological neighbors. Finally, potential DTI prediction was made, and the obtained samples were sent to the classifier for secondary classification.The performance of Graph-DTI and all baseline methods was evaluated using the sums of the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC). The results indicated that Graph-DTI outperformed the baseline methods in both performance results.Compared with other baseline DTI prediction methods, the results showed that Graph-DTI had better prediction performance. Additionally, in this study, we effectively classified drugs corresponding to different targets and vice versa. The above findings showed that Graph-DTI provided a powerful tool for drug research, development, and repositioning. Graph-DTI can serve as a drug development and repositioning tool more effectively than previous studies that did not use heterogeneous network graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小雨完成签到,获得积分10
刚刚
殷勤的紫槐完成签到,获得积分10
刚刚
wjw发布了新的文献求助10
刚刚
Anthony完成签到 ,获得积分10
1秒前
你好不好发布了新的文献求助10
3秒前
薇薇完成签到,获得积分10
3秒前
尘埃之影完成签到,获得积分10
3秒前
4秒前
davidwuran发布了新的文献求助10
4秒前
永远爱刻晴完成签到 ,获得积分10
5秒前
LW完成签到,获得积分10
5秒前
6秒前
kxy完成签到,获得积分10
7秒前
Dannerys完成签到 ,获得积分10
7秒前
lilil完成签到,获得积分10
8秒前
Kai完成签到,获得积分10
9秒前
young完成签到,获得积分10
9秒前
Alex完成签到,获得积分10
9秒前
SDM完成签到 ,获得积分10
9秒前
僵小柏完成签到,获得积分10
9秒前
不一样的烟火完成签到,获得积分10
9秒前
夏末完成签到,获得积分20
10秒前
默默的素阴完成签到,获得积分10
10秒前
mss12138完成签到,获得积分10
12秒前
爱蜜莉亚QAQ完成签到,获得积分10
12秒前
眇鱼完成签到 ,获得积分10
13秒前
无花果应助三新荞采纳,获得10
13秒前
尊敬枕头完成签到 ,获得积分10
13秒前
75986686完成签到,获得积分10
13秒前
kkkkllll完成签到,获得积分10
14秒前
14秒前
帮主哥哥完成签到,获得积分10
14秒前
小明完成签到,获得积分10
14秒前
16秒前
17秒前
cdercder应助007采纳,获得10
17秒前
17秒前
过冷风发布了新的文献求助10
18秒前
drbrianlau完成签到,获得积分10
19秒前
WenzongLai完成签到,获得积分10
20秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820027
求助须知:如何正确求助?哪些是违规求助? 3362923
关于积分的说明 10419615
捐赠科研通 3081277
什么是DOI,文献DOI怎么找? 1695047
邀请新用户注册赠送积分活动 814884
科研通“疑难数据库(出版商)”最低求助积分说明 768545