清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A comparison of multiple deep learning methods for predicting soil organic carbon in Southern Xinjiang, China

随机森林 人工智能 特征选择 卷积神经网络 特征(语言学) 人工神经网络 模式识别(心理学) 深信不疑网络 土壤碳 深度学习 计算机科学 机器学习 遥感 环境科学 土壤水分 土壤科学 地理 哲学 语言学
作者
Yu Wang,Songchao Chen,Yongsheng Hong,Bifeng Hu,Jie Peng,Zhou Shi
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108067-108067 被引量:26
标识
DOI:10.1016/j.compag.2023.108067
摘要

Soil organic carbon (SOC) plays an important role in soil functioning and also global C balance. Visible-near-infrared (Vis-NIR) spectroscopy can be regarded as a cost-effective alternative to monitor the SOC content. Previously, application of Vis-NIR spectroscopy in the quantitative estimation of SOC in arid and semi-arid regions has received relatively little attention. Here, three different sample sizes of dataset (i.e., 330, 660, and 990) with SOC contents and Vis-NIR spectroscopy measured in the laboratory were obtained from Southern Xinjiang, China. Eight feature selection methods, including Interval Random Frog (IRF), were used to extract the optimal spectral feature subset. Six deep learning (DL) algorithms (e.g., Long Short-Term Memory Neural Networks, LSTM; Deep Belief Networks, DBN) and one machine learning method (Random Forest, RF) were utilized to relate SOC to spectral predictors. The overall objective of this work was to compare the predicted potentials of seven modeling algorithms combined with eight feature selection methods for spectral prediction of SOC. In addition, this paper also investigated the influence of different calibration sample size on the final modeling accuracy for SOC. Results indicated that the DL algorithms outperformed RF for SOC prediction. Among the six DL approaches, the LSTM model performed the best, while the DBN model performed the worst. The one-dimensional-Convolutional Neural Network (1D-CNN), 2D-CNN, Recurrent Neural Network, and DBN algorithms were sensitive to different sample sizes. For the largest dataset (i.e., 990 samples), four of the eight feature selection methods combined with the DL algorithms could improve the prediction for SOC, relative to the corresponding full-spectrum DL models. Among all models developed for SOC, the IRF-LSTM model achieved the optimal prediction, with the validation R2 of 0.89. Our findings provided both theoretical and technical guidance for the spectral estimation of SOC with the relatively low values in arid and semi-arid area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是三石啊完成签到 ,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得30
31秒前
Billy应助科研通管家采纳,获得10
31秒前
林好人完成签到,获得积分10
42秒前
龙猫爱看书完成签到,获得积分10
42秒前
想人陪的飞薇完成签到 ,获得积分10
48秒前
LiJam完成签到,获得积分10
1分钟前
千帆破浪完成签到 ,获得积分10
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
Serein完成签到,获得积分10
1分钟前
Amon完成签到 ,获得积分10
1分钟前
缺粥完成签到 ,获得积分10
1分钟前
番茄小超人2号完成签到 ,获得积分10
2分钟前
Edward完成签到,获得积分10
2分钟前
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
史小霜发布了新的文献求助10
2分钟前
2分钟前
digger2023完成签到 ,获得积分10
2分钟前
你是我的唯一完成签到 ,获得积分10
2分钟前
领导范儿应助nojego采纳,获得10
2分钟前
我我我我发布了新的文献求助10
2分钟前
mf2002mf完成签到 ,获得积分10
2分钟前
kenchilie完成签到 ,获得积分10
3分钟前
nano完成签到 ,获得积分10
3分钟前
mojito完成签到 ,获得积分10
3分钟前
cdercder应助科研通管家采纳,获得10
4分钟前
科研通AI5应助斯文明杰采纳,获得10
4分钟前
yindi1991完成签到 ,获得积分10
4分钟前
RONG完成签到 ,获得积分10
4分钟前
strama完成签到,获得积分10
5分钟前
wyh295352318完成签到 ,获得积分10
5分钟前
5分钟前
sea完成签到 ,获得积分10
5分钟前
我我我我发布了新的文献求助10
5分钟前
我我我我完成签到,获得积分10
5分钟前
5分钟前
高分求助中
中华人民共和国出版史料(1954)第6卷 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845597
求助须知:如何正确求助?哪些是违规求助? 3387836
关于积分的说明 10550682
捐赠科研通 3108452
什么是DOI,文献DOI怎么找? 1712844
邀请新用户注册赠送积分活动 824508
科研通“疑难数据库(出版商)”最低求助积分说明 774877