Multi-Agent Reinforcement Learning for Job Shop Scheduling in Dynamic Environments

计算机科学 强化学习 动态优先级调度 两级调度 调度(生产过程) 作业车间调度 分布式计算 公平份额计划 单调速率调度 流水车间调度 适应性 人工智能 数学优化 地铁列车时刻表 操作系统 生态学 数学 生物
作者
Y. J. Pu,Fang Li,Shahin Rahimifard
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (8): 3234-3234 被引量:4
标识
DOI:10.3390/su16083234
摘要

In response to the challenges of dynamic adaptability, real-time interactivity, and dynamic optimization posed by the application of existing deep reinforcement learning algorithms in solving complex scheduling problems, this study proposes a novel approach using graph neural networks and deep reinforcement learning to complete the task of job shop scheduling. A distributed multi-agent scheduling architecture (DMASA) is constructed to maximize global rewards, modeling the intelligent manufacturing job shop scheduling problem as a sequential decision problem represented by graphs and using a Graph Embedding–Heterogeneous Graph Neural Network (GE-HetGNN) to encode state nodes and map them to the optimal scheduling strategy, including machine matching and process selection strategies. Finally, an actor–critic architecture-based multi-agent proximal policy optimization algorithm is employed to train the network and optimize the decision-making process. Experimental results demonstrate that the proposed framework exhibits generalizability, outperforms commonly used scheduling rules and RL-based scheduling methods on benchmarks, shows better stability than single-agent scheduling architectures, and breaks through the instance-size constraint, making it suitable for large-scale problems. We verified the feasibility of our proposed method in a specific experimental environment. The experimental results demonstrate that our research can achieve formal modeling and mapping with specific physical processing workshops, which aligns more closely with real-world green scheduling issues and makes it easier for subsequent researchers to integrate algorithms with actual environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhangdan发布了新的文献求助10
刚刚
在水一方应助研友_Z6k7B8采纳,获得10
1秒前
岁安安安完成签到,获得积分10
1秒前
小伊发布了新的文献求助10
1秒前
1秒前
1秒前
你在说神马完成签到 ,获得积分10
2秒前
朱可芯发布了新的文献求助10
2秒前
2秒前
Miaomiao发布了新的文献求助50
3秒前
hei完成签到,获得积分10
3秒前
不安一鸣完成签到,获得积分10
3秒前
萤火发布了新的文献求助10
3秒前
5秒前
bofu发布了新的文献求助10
5秒前
共享精神应助山复尔尔采纳,获得10
6秒前
研友_VZG7GZ应助夕荀采纳,获得10
6秒前
北海发布了新的文献求助10
6秒前
6秒前
6秒前
暗弱发布了新的文献求助10
7秒前
冷静灵竹完成签到,获得积分10
8秒前
zydf完成签到,获得积分10
8秒前
8秒前
wendydqw完成签到,获得积分10
8秒前
8秒前
爱撒娇的酸奶完成签到,获得积分10
9秒前
yiryir完成签到 ,获得积分10
9秒前
lt2完成签到,获得积分10
10秒前
海绵宝宝完成签到,获得积分10
10秒前
慕千万发布了新的文献求助10
11秒前
hei发布了新的文献求助10
11秒前
发嗲的天问完成签到,获得积分20
11秒前
张盒饭发布了新的文献求助10
12秒前
12秒前
12秒前
Forrest发布了新的文献求助10
13秒前
林屿溪完成签到,获得积分10
13秒前
夕荀完成签到,获得积分10
14秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831932
求助须知:如何正确求助?哪些是违规求助? 3374210
关于积分的说明 10483852
捐赠科研通 3094099
什么是DOI,文献DOI怎么找? 1703329
邀请新用户注册赠送积分活动 819378
科研通“疑难数据库(出版商)”最低求助积分说明 771463