亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Framework for Single-Panicle Litchi Flower Counting by Regression with Multitask Learning

回归 果园 花序 均方误差 回归分析 像素 线性回归 人工智能 计算机科学 统计 数学 机器学习 模式识别(心理学) 园艺 生物
作者
Jiaquan Lin,Jun Li,Zhe Ma,Can Li,Guangwen Huang,Huazhong Lu
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:6 被引量:7
标识
DOI:10.34133/plantphenomics.0172
摘要

The number of flowers is essential for evaluating the growth status of litchi trees and enables researchers to estimate flowering rates and conduct various phenotypic studies, particularly focusing on the information of individual panicles. However, manual counting remains the primary method for quantifying flowers, and there has been insufficient emphasis on the advancement of reliable deep learning methods for estimation and their integration into research. Furthermore, the current density map-based methods are susceptible to background interference. To tackle the challenges of accurately quantifying small and dense male litchi flowers, a framework counting the flowers in panicles is proposed. Firstly, an existing effective algorithm YOLACT++ is utilized to segment individual panicles from images. Secondly, a novel algorithm FlowerNet based on density map regression is proposed to accurately count flowers in each panicle. By employing a multitask learning approach, FlowerNet effectively captures both foreground and background information, thereby overcoming interference from non-target areas during pixel-level regression tasks. It achieves a mean absolute error of 47.71 and a root mean squared error of 61.78 on the flower dataset constructed. Additionally, a regression equation is established using a dataset of inflorescences to examine the application of the algorithm for flower counting. It captures the relationship between the predicted number of flowers by FlowerNet and the manually counted number, resulting in a determination coefficient ( R 2 ) of 0.81. The proposed algorithm shows promise for automated estimation of litchi flowering quantity and can serve as a valuable reference for litchi orchard management during flowering period.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
libin发布了新的文献求助30
1秒前
绾妤完成签到 ,获得积分10
4秒前
7秒前
10秒前
12秒前
情怀应助SiboN采纳,获得10
15秒前
善学以致用应助libin采纳,获得10
16秒前
wdddr发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助100
21秒前
24秒前
xlh完成签到 ,获得积分10
24秒前
cjh驳回了orixero应助
29秒前
29秒前
李健应助wonder采纳,获得10
29秒前
守一完成签到,获得积分10
32秒前
上官若男应助wop111采纳,获得10
32秒前
33秒前
kuaikuailele发布了新的文献求助10
39秒前
粥粥完成签到 ,获得积分10
39秒前
传奇3应助南山采纳,获得10
41秒前
科研花完成签到 ,获得积分10
41秒前
彦卿完成签到 ,获得积分10
43秒前
徐per爱豆完成签到 ,获得积分10
55秒前
56秒前
57秒前
3080完成签到 ,获得积分10
1分钟前
Dr.Wei完成签到,获得积分10
1分钟前
yyt发布了新的文献求助10
1分钟前
zmx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
今后应助MuGen采纳,获得10
1分钟前
大王发布了新的文献求助30
1分钟前
CipherSage应助白羽丫采纳,获得10
1分钟前
1分钟前
栗子完成签到 ,获得积分10
1分钟前
三年六班李子明完成签到 ,获得积分10
1分钟前
Tendency完成签到 ,获得积分10
1分钟前
yyt完成签到,获得积分20
1分钟前
脑洞疼应助sss采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944591
求助须知:如何正确求助?哪些是违规求助? 4209453
关于积分的说明 13085313
捐赠科研通 3989186
什么是DOI,文献DOI怎么找? 2184034
邀请新用户注册赠送积分活动 1199383
关于科研通互助平台的介绍 1112390