Nodule-CLIP: Lung nodule classification based on multi-modal contrastive learning

结核(地质) 计算机科学 可解释性 特征(语言学) 人工智能 深度学习 模式识别(心理学) 放射科 医学 生物 内科学 古生物学 语言学 哲学
作者
Lijing Sun,Mengyi Zhang,Yu Lu,Wenjun Zhu,Yang Yi,Fei Yan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:175: 108505-108505 被引量:6
标识
DOI:10.1016/j.compbiomed.2024.108505
摘要

The latest developments in deep learning have demonstrated the importance of CT medical imaging for the classification of pulmonary nodules. However, challenges remain in fully leveraging the relevant medical annotations of pulmonary nodules and distinguishing between the benign and malignant labels of adjacent nodules. Therefore, this paper proposes the Nodule-CLIP model, which deeply mines the potential relationship between CT images, complex attributes of lung nodules, and benign and malignant attributes of lung nodules through a comparative learning method, and optimizes the model in the image feature extraction network by using its similarities and differences to improve its ability to distinguish similar lung nodules. Firstly, we segment the 3D lung nodule information by U-Net to reduce the interference caused by the background of lung nodules and focus on the lung nodule images. Secondly, the image features, class features, and complex attribute features are aligned by contrastive learning and loss function in Nodule-CLIP to achieve lung nodule image optimization and improve classification ability. A series of testing and ablation experiments were conducted on the public dataset LIDC-IDRI, and the final benign and malignant classification rate was 90.6%, and the recall rate was 92.81%. The experimental results show the advantages of this method in terms of lung nodule classification as well as interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwp发布了新的文献求助20
刚刚
深情安青应助yuchangkun采纳,获得10
刚刚
1秒前
lc1342完成签到,获得积分10
2秒前
2秒前
正直纸鹤完成签到,获得积分10
4秒前
小唐完成签到,获得积分10
4秒前
汉堡包应助高高问柳采纳,获得10
4秒前
5秒前
5秒前
5秒前
科研通AI5应助跳跃的发夹采纳,获得10
6秒前
yuchangkun完成签到,获得积分10
6秒前
7秒前
昏睡的蟠桃应助DumBell采纳,获得20
7秒前
liming完成签到,获得积分10
7秒前
7秒前
8秒前
正直纸鹤发布了新的文献求助10
8秒前
kaiki发布了新的文献求助10
8秒前
wood发布了新的文献求助10
10秒前
11秒前
LIU完成签到,获得积分10
11秒前
asdaas发布了新的文献求助10
12秒前
12秒前
妮儿完成签到,获得积分10
13秒前
满意的西牛完成签到,获得积分10
13秒前
英俊鼠标完成签到 ,获得积分10
14秒前
xwx完成签到,获得积分10
14秒前
14秒前
大个应助banban采纳,获得10
16秒前
16秒前
科研通AI2S应助甜美的秋尽采纳,获得10
18秒前
夜云完成签到,获得积分10
19秒前
19秒前
深情安青应助25号底片采纳,获得10
19秒前
20秒前
SciGPT应助灵巧的导师采纳,获得30
20秒前
难过的箴完成签到 ,获得积分10
21秒前
安详的语蕊完成签到,获得积分10
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846335
求助须知:如何正确求助?哪些是违规求助? 3388772
关于积分的说明 10554115
捐赠科研通 3109209
什么是DOI,文献DOI怎么找? 1713517
邀请新用户注册赠送积分活动 824761
科研通“疑难数据库(出版商)”最低求助积分说明 775065