A novel two-stage wrapper feature selection approach based on greedy search for text sentiment classification

特征选择 计算机科学 人工智能 选择(遗传算法) 降维 贪婪算法 分类器(UML) 特征(语言学) 排名(信息检索) 朴素贝叶斯分类器 机器学习 数据挖掘 支持向量机 算法 哲学 语言学
作者
Ensar Arif Sağbaş
出处
期刊:Neurocomputing [Elsevier]
卷期号:590: 127729-127729 被引量:11
标识
DOI:10.1016/j.neucom.2024.127729
摘要

Sentiment analysis is a crucial step in obtaining subjective data from online text sources. Nevertheless, the substantial challenge of high dimensionality prevails within text classification. Addressing this, dimension reduction emerges as a valuable approach to enhance the efficacy of classification in the domain of machine learning. The discerning removal of redundant features not only expedites training processes but also bolsters the achievement of accurate classifications. It is worth noting that the effectiveness of distinct feature selection methodologies can be contingent upon the unique attributes inherent in diverse datasets. Within the purview of this investigation, a novel two-stage approach is introduced, characterized by a greedy search-based wrapper feature selection algorithm. The underpinning of this algorithm involves leveraging the outcomes yielded by filter-based feature selection techniques to establish a prioritized sequence for the scrutiny of features within the proposed framework. This strategic sequencing harnesses the cumulative insights from a series of filter-based methodologies, thereby facilitating the curation of feature subsets that underscore pivotal attributes. Nonetheless, it is acknowledged that the greedy selection approach primarily favors features with high-ranking scores, and thus, it may not adequately evaluate the potential of feature combinations that involve low-scoring elements. An extensive experimental inquiry was conducted across widely recognized sentiment analysis datasets to assess the performance of the introduced methodology. The computational findings eloquently demonstrate that the proposed algorithm attains an average accuracy of 96.88% for nine public sentiment datasets and 94.43% for the Humir datasets when coupled with the multinomial Naive Bayes classifier. Furthermore, the experimental outcomes conspicuously establish the superiority of the proposed technique in state-of-the-art studies across the same set of nine sentiment datasets and the Humir datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
chiweiyoung发布了新的文献求助10
2秒前
五斤老陈醋完成签到,获得积分10
4秒前
4秒前
4秒前
Lizhe123完成签到,获得积分10
5秒前
5秒前
yfy发布了新的文献求助10
5秒前
JamesPei应助YH采纳,获得10
6秒前
王粒伊完成签到,获得积分10
7秒前
HHYYAA发布了新的文献求助10
7秒前
万嘉俊发布了新的文献求助20
7秒前
cuber完成签到 ,获得积分10
8秒前
云里完成签到,获得积分10
9秒前
不觉完成签到 ,获得积分10
9秒前
meng发布了新的文献求助10
9秒前
缥缈耷发布了新的文献求助10
9秒前
Jiangtao完成签到,获得积分10
10秒前
科研通AI6应助chiweiyoung采纳,获得10
12秒前
毛鹤翔完成签到 ,获得积分10
14秒前
难过的梦松完成签到,获得积分10
15秒前
深情安青应助Lizhe采纳,获得10
15秒前
不止夏天完成签到,获得积分10
17秒前
yfy完成签到,获得积分10
17秒前
缥缈耷完成签到,获得积分10
17秒前
共享精神应助memes采纳,获得10
17秒前
忧郁小刺猬完成签到,获得积分10
18秒前
李健应助dw采纳,获得10
18秒前
18秒前
自信的书南完成签到,获得积分10
19秒前
xuanli发布了新的文献求助10
19秒前
19秒前
田様应助科研小白采纳,获得10
21秒前
NexusExplorer应助yfy采纳,获得10
21秒前
科研通AI6应助Shiyao_Yuan采纳,获得10
22秒前
22秒前
aodilee应助科研通管家采纳,获得20
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
酷波er应助科研通管家采纳,获得10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339290
求助须知:如何正确求助?哪些是违规求助? 4476138
关于积分的说明 13930647
捐赠科研通 4371604
什么是DOI,文献DOI怎么找? 2401978
邀请新用户注册赠送积分活动 1394933
关于科研通互助平台的介绍 1366848