A systematic review and research recommendations on artificial intelligence for automated cervical cancer detection

宫颈癌 癌症 医学 医学物理学 计算机科学 人工智能 内科学
作者
Smith K. Khare,Victoria Blanes‐Vidal,Berit Bargum Booth,Lone Kjeld Petersen,Esmaeil S. Nadimi
出处
期刊:Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery [Wiley]
卷期号:14 (6)
标识
DOI:10.1002/widm.1550
摘要

Abstract Early diagnosis of abnormal cervical cells enhances the chance of prompt treatment for cervical cancer (CrC). Artificial intelligence (AI)‐assisted decision support systems for detecting abnormal cervical cells are developed because manual identification needs trained healthcare professionals, and can be difficult, time‐consuming, and error‐prone. The purpose of this study is to present a comprehensive review of AI technologies used for detecting cervical pre‐cancerous lesions and cancer. The review study includes studies where AI was applied to Pap Smear test (cytological test), colposcopy, sociodemographic data and other risk factors, histopathological analyses, magnetic resonance imaging‐, computed tomography‐, and positron emission tomography‐scan‐based imaging modalities. We performed searches on Web of Science, Medline, Scopus, and Inspec. The preferred reporting items for systematic reviews and meta‐analysis guidelines were used to search, screen, and analyze the articles. The primary search resulted in identifying 9745 articles. We followed strict inclusion and exclusion criteria, which include search windows of the last decade, journal articles, and machine/deep learning‐based methods. A total of 58 studies have been included in the review for further analysis after identification, screening, and eligibility evaluation. Our review analysis shows that deep learning models are preferred for imaging techniques, whereas machine learning‐based models are preferred for sociodemographic data. The analysis shows that convolutional neural network‐based features yielded representative characteristics for detecting pre‐cancerous lesions and CrC. The review analysis also highlights the need for generating new and easily accessible diverse datasets to develop versatile models for CrC detection. Our review study shows the need for model explainability and uncertainty quantification to increase the trust of clinicians and stakeholders in the decision‐making of automated CrC detection models. Our review suggests that data privacy concerns and adaptability are crucial for deployment hence, federated learning and meta‐learning should also be explored. This article is categorized under: Fundamental Concepts of Data and Knowledge > Explainable AI Technologies > Machine Learning Technologies > Classification
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杰杰杰杰完成签到,获得积分10
刚刚
DMY完成签到,获得积分20
1秒前
仙乐完成签到,获得积分10
1秒前
Qian完成签到,获得积分10
1秒前
打打应助土拨鼠采纳,获得10
1秒前
Pumpkin完成签到,获得积分10
1秒前
文艺不凡完成签到,获得积分10
1秒前
科研通AI5应助虚心念桃采纳,获得10
1秒前
萱1988完成签到,获得积分10
2秒前
Raymon33完成签到,获得积分10
2秒前
整齐百褶裙完成签到 ,获得积分10
2秒前
默认用户名完成签到,获得积分10
2秒前
马外奥完成签到,获得积分10
2秒前
bc应助奇奇云采纳,获得30
2秒前
奶黄包完成签到 ,获得积分10
3秒前
布丁完成签到,获得积分10
3秒前
3秒前
景行行止完成签到,获得积分10
3秒前
njzqs完成签到,获得积分10
3秒前
未卜发布了新的文献求助10
4秒前
Pyrene发布了新的文献求助10
4秒前
糟糕的铁锤完成签到,获得积分0
4秒前
发nature完成签到 ,获得积分10
4秒前
科研渣渣完成签到,获得积分10
4秒前
SYLH应助Yy杨优秀采纳,获得10
4秒前
中华有为完成签到,获得积分10
4秒前
奋斗冰儿发布了新的文献求助10
4秒前
米粒完成签到 ,获得积分10
4秒前
onestepcloser完成签到 ,获得积分10
4秒前
Can完成签到,获得积分10
5秒前
5秒前
庄怀逸完成签到 ,获得积分10
6秒前
6秒前
tanzbd完成签到,获得积分10
7秒前
小王好饿完成签到 ,获得积分10
7秒前
小虫学长完成签到,获得积分10
7秒前
8秒前
小羊先生完成签到 ,获得积分10
8秒前
沈括完成签到,获得积分10
9秒前
9秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788621
求助须知:如何正确求助?哪些是违规求助? 3333855
关于积分的说明 10265174
捐赠科研通 3049972
什么是DOI,文献DOI怎么找? 1673781
邀请新用户注册赠送积分活动 802206
科研通“疑难数据库(出版商)”最低求助积分说明 760549