DyGKT: Dynamic Graph Learning for Knowledge Tracing

计算机科学 追踪 图形 知识图 理论计算机科学 人工智能 程序设计语言
作者
Ke Cheng,Linzhi Peng,Pengyang Wang,Junchen Ye,Leilei Sun,Bowen Du
标识
DOI:10.1145/3637528.3671773
摘要

Knowledge Tracing aims to assess student learning states by predicting their performance in answering questions. Different from the existing research which utilizes fixed-length learning sequence to obtain the student states and regards KT as a static problem, this work is motivated by three dynamical characteristics: 1) The scales of students answering records are constantly growing; 2) The semantics of time intervals between the records vary; 3) The relationships between students, questions and concepts are evolving. The three dynamical characteristics above contain the great potential to revolutionize the existing knowledge tracing methods. Along this line, we propose a Dynamic Graph-based Knowledge Tracing model, namely DyGKT. In particular, a continuous-time dynamic question-answering graph for knowledge tracing is constructed to deal with the infinitely growing answering behaviors, and it is worth mentioning that it is the first time dynamic graph learning technology is used in this field. Then, a dual time encoder is proposed to capture long-term and short-term semantics among the different time intervals. Finally, a multiset indicator is utilized to model the evolving relationships between students, questions, and concepts via the graph structural feature. Numerous experiments are conducted on five real-world datasets, and the results demonstrate the superiority of our model. All the used resources are publicly available at https://github.com/PengLinzhi/DyGKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张传茁完成签到,获得积分10
1秒前
feizao完成签到,获得积分10
2秒前
3秒前
Lsy完成签到,获得积分10
4秒前
Xx完成签到 ,获得积分10
4秒前
852应助话哈哈采纳,获得10
5秒前
共享精神应助李华采纳,获得10
6秒前
鳗鱼元冬发布了新的文献求助10
8秒前
xingkong完成签到,获得积分10
9秒前
烟花应助大学生采纳,获得10
11秒前
12秒前
Orange应助ira采纳,获得10
15秒前
15秒前
Yanfei完成签到 ,获得积分10
17秒前
李华发布了新的文献求助10
20秒前
kelexh发布了新的文献求助10
21秒前
wxs应助22w22采纳,获得10
25秒前
26秒前
科研通AI5应助刘小明采纳,获得10
26秒前
Slyvia2025完成签到,获得积分10
28秒前
李华完成签到,获得积分10
30秒前
30秒前
Slyvia2025发布了新的文献求助20
32秒前
Lancer1034完成签到,获得积分10
32秒前
Lancer1034发布了新的文献求助10
35秒前
zhouleiwang发布了新的文献求助10
36秒前
打打应助鱼咬羊采纳,获得10
41秒前
41秒前
moumoulin1发布了新的文献求助10
42秒前
上官若男应助重要手机采纳,获得30
43秒前
45秒前
聪慧的伟发布了新的文献求助10
47秒前
48秒前
49秒前
爆米花应助自由采纳,获得10
50秒前
忐忑的黑猫应助内向秋寒采纳,获得10
52秒前
67完成签到 ,获得积分10
52秒前
刘小明发布了新的文献求助10
53秒前
54秒前
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777940
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214860
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315