亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NavRL: Learning Safe Flight in Dynamic Environments

计算机科学 航空学 工程类
作者
Zhefan Xu,Xinming Han,Haoyu Shen,Hanyu Jin,Kenji Shimada
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.15634
摘要

Safe flight in dynamic environments requires autonomous unmanned aerial vehicles (UAVs) to make effective decisions when navigating cluttered spaces with moving obstacles. Traditional approaches often decompose decision-making into hierarchical modules for prediction and planning. Although these handcrafted systems can perform well in specific settings, they might fail if environmental conditions change and often require careful parameter tuning. Additionally, their solutions could be suboptimal due to the use of inaccurate mathematical model assumptions and simplifications aimed at achieving computational efficiency. To overcome these limitations, this paper introduces the NavRL framework, a deep reinforcement learning-based navigation method built on the Proximal Policy Optimization (PPO) algorithm. NavRL utilizes our carefully designed state and action representations, allowing the learned policy to make safe decisions in the presence of both static and dynamic obstacles, with zero-shot transfer from simulation to real-world flight. Furthermore, the proposed method adopts a simple but effective safety shield for the trained policy, inspired by the concept of velocity obstacles, to mitigate potential failures associated with the black-box nature of neural networks. To accelerate the convergence, we implement the training pipeline using NVIDIA Isaac Sim, enabling parallel training with thousands of quadcopters. Simulation and physical experiments show that our method ensures safe navigation in dynamic environments and results in the fewest collisions compared to benchmarks in scenarios with dynamic obstacles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
Yuelong发布了新的文献求助30
24秒前
26秒前
kk发布了新的文献求助10
32秒前
34秒前
852应助科研通管家采纳,获得10
47秒前
kk完成签到,获得积分10
48秒前
momo123完成签到 ,获得积分10
1分钟前
852应助kk采纳,获得10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
贼吖完成签到 ,获得积分20
2分钟前
文静晓夏完成签到,获得积分20
2分钟前
文静晓夏发布了新的文献求助10
2分钟前
李健应助erfan采纳,获得10
2分钟前
ET完成签到,获得积分10
2分钟前
贼吖发布了新的文献求助100
2分钟前
3分钟前
3分钟前
3分钟前
erfan发布了新的文献求助10
3分钟前
3分钟前
舒适的寒烟完成签到,获得积分10
4分钟前
erfan完成签到,获得积分10
4分钟前
Lainey完成签到,获得积分10
4分钟前
Michael应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
风中凡霜发布了新的文献求助10
5分钟前
小蘑菇应助风中凡霜采纳,获得10
5分钟前
隐形的雁发布了新的文献求助20
5分钟前
SciGPT应助隐形的雁采纳,获得10
5分钟前
5分钟前
xyliu发布了新的文献求助10
6分钟前
6分钟前
6分钟前
ki完成签到 ,获得积分10
6分钟前
Michael应助科研通管家采纳,获得10
6分钟前
小康找文献完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837395
求助须知:如何正确求助?哪些是违规求助? 3379544
关于积分的说明 10509896
捐赠科研通 3099190
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552