清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and comparative of a new meta-ensemble machine learning model in predicting construction labor productivity

机器学习 人工智能 集成学习 计算机科学 随机森林 集合预报 投票 范畴变量 数据挖掘 政治 政治学 法学
作者
İbrahim Karataş,Abdülkadir Budak
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
卷期号:31 (3): 1123-1144 被引量:25
标识
DOI:10.1108/ecam-08-2021-0692
摘要

Purpose The study is aimed to compare the prediction success of basic machine learning and ensemble machine learning models and accordingly create novel prediction models by combining machine learning models to increase the prediction success in construction labor productivity prediction models. Design/methodology/approach Categorical and numerical data used in prediction models in many studies in the literature for the prediction of construction labor productivity were made ready for analysis by preprocessing. The Python programming language was used to develop machine learning models. As a result of many variation trials, the models were combined and the proposed novel voting and stacking meta-ensemble machine learning models were constituted. Finally, the models were compared to Target and Taylor diagram. Findings Meta-ensemble models have been developed for labor productivity prediction by combining machine learning models. Voting ensemble by combining et, gbm, xgboost, lightgbm, catboost and mlp models and stacking ensemble by combining et, gbm, xgboost, catboost and mlp models were created and finally the Et model as meta-learner was selected. Considering the prediction success, it has been determined that the voting and stacking meta-ensemble algorithms have higher prediction success than other machine learning algorithms. Model evaluation metrics, namely MAE, MSE, RMSE and R 2 , were selected to measure the prediction success. For the voting meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R 2 are 0.0499, 0.0045, 0.0671 and 0.7886, respectively. For the stacking meta-ensemble algorithm, the values of the model evaluation metrics MAE, MSE, RMSE and R 2 are 0.0469, 0.0043, 0.0658 and 0.7967, respectively. Research limitations/implications The study shows the comparison between machine learning algorithms and created novel meta-ensemble machine learning algorithms to predict the labor productivity of construction formwork activity. The practitioners and project planners can use this model as reliable and accurate tool for predicting the labor productivity of construction formwork activity prior to construction planning. Originality/value The study provides insight into the application of ensemble machine learning algorithms in predicting construction labor productivity. Additionally, novel meta-ensemble algorithms have been used and proposed. Therefore, it is hoped that predicting the labor productivity of construction formwork activity with high accuracy will make a great contribution to construction project management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助336669464采纳,获得50
8秒前
Tina完成签到 ,获得积分10
11秒前
风起完成签到 ,获得积分10
15秒前
16秒前
orixero应助hmhu采纳,获得10
21秒前
nomanesfy完成签到 ,获得积分10
21秒前
白子双完成签到,获得积分10
29秒前
哥哥完成签到,获得积分10
30秒前
33秒前
t铁核桃1985完成签到 ,获得积分10
42秒前
醉生梦死完成签到 ,获得积分10
48秒前
TY完成签到 ,获得积分10
50秒前
57秒前
炙热的羽毛完成签到,获得积分10
57秒前
59秒前
shyxia完成签到 ,获得积分10
1分钟前
1分钟前
336669464发布了新的文献求助50
1分钟前
天将明完成签到 ,获得积分10
1分钟前
hjyylab应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
hjyylab应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
hmhu驳回了今后应助
1分钟前
cdercder应助感性的靖仇采纳,获得10
1分钟前
1分钟前
jameslee04完成签到 ,获得积分10
1分钟前
单小芫完成签到 ,获得积分10
1分钟前
星辰大海应助定西采纳,获得10
1分钟前
huangzsdy完成签到,获得积分10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
欢喜小蚂蚁完成签到 ,获得积分10
1分钟前
哭泣的幼蓉完成签到 ,获得积分10
1分钟前
星辰大海完成签到 ,获得积分10
1分钟前
朱迪完成签到 ,获得积分10
1分钟前
开朗白开水完成签到 ,获得积分10
1分钟前
小李新人完成签到 ,获得积分10
1分钟前
Bella完成签到 ,获得积分10
1分钟前
孤独剑完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837567
求助须知:如何正确求助?哪些是违规求助? 3379673
关于积分的说明 10510114
捐赠科研通 3099294
什么是DOI,文献DOI怎么找? 1707029
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615