Reexamining the heavy-atom-effect: The universal heavy-atom-induced fluorescence enhancement principle for through-space conjugated AIEgens

Atom(片上系统) 荧光 化学 共轭体系 四苯乙烯 金属 光化学 化学物理 聚集诱导发射 物理 量子力学 计算机科学 嵌入式系统 有机化学 聚合物
作者
Zuping Xiong,Wenqi Gong,Pengfei Xu,Mengyi Jiang,Xuting Cai,Yuqing Zhu,Xinni Ping,Hui Feng,Huili Ma,Zhaosheng Qian
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:451: 139030-139030 被引量:8
标识
DOI:10.1016/j.cej.2022.139030
摘要

The heavy-atom effect is a classic photophysical principle that dominates heavy-atom-induced fluorescence quenching and phosphorescence enhancement and has been universally suited for conventional luminogens with through-bond conjugation; however, its universality to emerging AIEgens (i.e., luminogens exhibiting aggregation-induced emission) with through-space conjugation is questionable. Herein, a series of tetraphenylethylene (TPE)-based AIEgens containing diverse non-metallic elements were designed by introducing each non-metallic element into the typical TPE skeleton, and their abnormal heavy-atom-induced fluorescence enhancement behaviors were examined against the classic heavy-atom effect. The underlying nature of heavy-atom-induced fluorescence enhancement was experimentally and theoretically explored. It was found that both insignificant heavy-atom-induced intersystem crossing processes (owing to the intrinsic through-space conjugation feature) and significant heavy-atom-induced restriction of the intramolecular vibrations cooperatively contribute to such an abnormal fluorescence enhancement. In addition, this principle was found to be universally applicable to TPE-based AIEgens containing other heavy atoms, which validates the universality of the heavy-atom-induced fluorescence enhancement principle for typical AIEgens with through-bond and through-space conjugation. In summary, this study re-examined the classic heavy-atom effect from a completely fresh perspective of emerging AIEgens and proposed a universal heavy-atom-induced fluorescence enhancement principle suited for most AIEgens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助momo采纳,获得10
刚刚
study00122完成签到,获得积分10
1秒前
Apricot发布了新的文献求助10
1秒前
Shelton完成签到,获得积分10
1秒前
谁能拒绝周杰伦呢完成签到 ,获得积分10
3秒前
旷意发布了新的文献求助10
3秒前
辜凯莹完成签到,获得积分10
5秒前
jay发布了新的文献求助10
6秒前
Byla完成签到,获得积分10
6秒前
隐形的雪碧完成签到 ,获得积分10
6秒前
秋雪瑶应助耍酷以柳采纳,获得10
7秒前
8秒前
NexusExplorer应助hengjiji采纳,获得10
9秒前
TL完成签到,获得积分10
9秒前
文献求助111完成签到,获得积分20
10秒前
10秒前
搜集达人应助甜甜木各格采纳,获得10
10秒前
MIST留下了新的社区评论
11秒前
旷意完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
zz发布了新的文献求助10
16秒前
17秒前
科目三应助倔强的秃驴采纳,获得10
17秒前
19秒前
耍酷以柳发布了新的文献求助10
19秒前
天天快乐应助bofu采纳,获得10
20秒前
调皮的豌豆完成签到,获得积分10
20秒前
负责月光发布了新的文献求助10
21秒前
傢誠发布了新的文献求助10
21秒前
Tsui发布了新的文献求助30
21秒前
田様应助火焰向上采纳,获得10
22秒前
小尹同学完成签到,获得积分0
22秒前
无辜的一笑完成签到,获得积分10
22秒前
RealPeace给ke的求助进行了留言
23秒前
25秒前
26秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2409099
求助须知:如何正确求助?哪些是违规求助? 2105043
关于积分的说明 5315997
捐赠科研通 1832563
什么是DOI,文献DOI怎么找? 913085
版权声明 560733
科研通“疑难数据库(出版商)”最低求助积分说明 488238