Application and improvement of Canny edge-detection algorithm for exterior wall hollowing detection using infrared thermal images

Canny边缘检测器 微分边缘检测器 索贝尔算子 边缘检测 Prewitt算子 图像渐变 算法 人工智能 计算机视觉 图像(数学) 模式识别(心理学) 计算机科学 图像处理
作者
Youcun Lu,Lin Duanmu,Zhiqiang Zhai,Zongshan Wang
出处
期刊:Energy and Buildings [Elsevier BV]
卷期号:274: 112421-112421 被引量:52
标识
DOI:10.1016/j.enbuild.2022.112421
摘要

The periodic hollowing inspection of the existing building exterior wall is crucial for public safety and building energy conservation. Due to its non-destructive and intuition advantage, the infrared thermal detection is proposed to be an ideal survey method. However, much manual participation is required to distinguish the hollowing flaw relying on empirical judgment, and a heavy burden comes up when large-area diagnosis required. In order to improve the efficiency of hollowing detection, this investigation developed the Canny algorithm to realize the automatic processing using the computer instead of manual judgment. At first, reasonable pieces of setting advice were given to get more clear hollowing region contours with the final recognition outcome comparison of different processing methods for each step. Besides, it was found that the hollowing contour gradient values are lower and exist in a short interval, and the segmentation threshold value was critical in the Canny edge-detection algorithm, which highly restricted the speed of processing large amounts of infrared images. To improve the efficiency of thermal image recognition, a threshold selection method based on the local maximum inter-class variance algorithm was introduced into the Canny edge-detection algorithm. Compared with Sobel, Roberts, Prewitt, and LoG, the proposed algorithm presented a better performance in the identification of hollowing edge contour according to the verification based on three cases. It revealed that the improved Canny edge-detection algorithm was effective and efficient, which could not only eliminate the influence of subjective factors but also achieve full-automatic and batch processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangyi完成签到 ,获得积分10
1秒前
科研牛马完成签到,获得积分10
2秒前
笑忘书发布了新的文献求助10
2秒前
巴布鲁斯发布了新的文献求助10
3秒前
3秒前
guojingjing发布了新的文献求助10
4秒前
爆米花应助南宫誉采纳,获得10
6秒前
宁为树完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
我是老大应助HUHU采纳,获得10
9秒前
SAXA完成签到,获得积分10
9秒前
12秒前
12秒前
Baihuashan完成签到 ,获得积分10
14秒前
Jay完成签到,获得积分10
14秒前
朴实云应完成签到,获得积分10
15秒前
hustscholar完成签到,获得积分10
18秒前
思思完成签到 ,获得积分10
20秒前
你好应助哈哈采纳,获得10
20秒前
好运来完成签到,获得积分10
21秒前
NexusExplorer应助guojingjing采纳,获得10
21秒前
茶包完成签到,获得积分10
23秒前
benben发布了新的文献求助20
25秒前
笑忘书关注了科研通微信公众号
27秒前
芮rich完成签到,获得积分10
30秒前
Tianling完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
34秒前
小呵点完成签到 ,获得积分10
34秒前
星海殇完成签到 ,获得积分0
35秒前
CHANG完成签到 ,获得积分10
35秒前
三金完成签到,获得积分10
36秒前
37秒前
小瑄完成签到 ,获得积分10
38秒前
ROMANTIC完成签到 ,获得积分10
40秒前
丹妮完成签到 ,获得积分10
42秒前
song完成签到,获得积分10
42秒前
Antonio完成签到 ,获得积分10
44秒前
莹亮的星空完成签到,获得积分0
44秒前
77完成签到 ,获得积分10
45秒前
小静完成签到,获得积分10
46秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883946
求助须知:如何正确求助?哪些是违规求助? 3426217
关于积分的说明 10747634
捐赠科研通 3151073
什么是DOI,文献DOI怎么找? 1739237
邀请新用户注册赠送积分活动 839646
科研通“疑难数据库(出版商)”最低求助积分说明 784753