P‐97: Applying a generative model to improve TFT measurement capacity performance

插值(计算机图形学) 计算机科学 自编码 噪音(视频) 算法 薄膜晶体管 降噪 人工神经网络 电子工程 人工智能 材料科学 工程类 运动(物理) 图像(数学) 复合材料 图层(电子)
作者
Kyongtae Park,Taeyoung Khim
出处
期刊:Sid's Digest Of Technical Papers [Wiley]
卷期号:54 (1): 1544-1547
标识
DOI:10.1002/sdtp.16886
摘要

AMOLED is based on current driving, so the current characteristics of TFT IV(current per voltage) have much influence. Now, as the technology of AMOLED is expanded to HOP(hybrid of Oxide and Polysilicon TFT) and UPC(Under Panel Camera), polysilicon and oxide TFT are used in combination, and TFTs of various sizes must be used at the same time. So, first, it is attempted to reduce the IV measurement points and improve them with the known interpolation method. However, there is a limit to accurate prediction due to the non‐linear characteristics of TFT and noise measurement in the off region of TFT. In this paper, we applied an asymmetric neural network structure to overcome this limitation of reduction decoding. To do this, we developed an asymmetric autoencoder to decode or reconstruct TFT IV data from small sampled IV measurements (14~35%). Then, to overcome the error estimation of generating many errors in the surrounding interpolation because noise is included in the TFT off region, a function of partially removing noise only in the off region is introduced. In addition, to overcome the performance decrease problem due to the minimal amount of abnormal data, which should be accurately predicted in a situation close to abnormal, generative models were applied to overcome it. The IV information to be generated was encoded using a pretrained large language model to reduce the dimensionality and converted into text, which was then trained on the distillate GPT‐2 model and used as a generative model. In the general interpolation method, the performance decreases as the number of measurement samples are reduced; the method proposed in this paper maintains its performance even if the sampling is under 20%. This means that it is adequate to restore only a small portion of information using the latent space information that has learned the TFT IV saturation and linear mode characteristics. This is applied to mass production by increasing the measurement capability without additional equipment investment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴邪0312完成签到,获得积分10
1秒前
1秒前
1秒前
XDF发布了新的文献求助20
2秒前
威威完成签到,获得积分10
3秒前
bin发布了新的文献求助10
3秒前
3秒前
zx发布了新的文献求助10
4秒前
4秒前
愉快数据线完成签到 ,获得积分10
4秒前
王SQ完成签到,获得积分10
4秒前
4秒前
太叔文博完成签到,获得积分0
5秒前
XLC完成签到,获得积分10
5秒前
李大明星完成签到,获得积分10
5秒前
7秒前
木糖醇完成签到,获得积分10
7秒前
7秒前
隐形迎丝发布了新的文献求助10
7秒前
单纯菠萝完成签到,获得积分10
9秒前
9秒前
GJY发布了新的文献求助10
9秒前
wo发布了新的文献求助10
10秒前
10秒前
三三四发布了新的文献求助10
10秒前
坚若磐石发布了新的文献求助10
10秒前
tothemoon发布了新的文献求助10
10秒前
沉默山灵完成签到,获得积分10
10秒前
儒雅的天川应助11采纳,获得10
12秒前
13秒前
沉默山灵发布了新的文献求助30
13秒前
13秒前
13秒前
完美世界应助XDF采纳,获得10
15秒前
英俊的铭应助吴裙裙采纳,获得10
15秒前
17秒前
三七发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
科研通AI5应助wo采纳,获得30
18秒前
忧心的曼凝应助黄奥龙采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Apiaceae Himalayenses. 2 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239267
求助须知:如何正确求助?哪些是违规求助? 3773047
关于积分的说明 11849138
捐赠科研通 3428810
什么是DOI,文献DOI怎么找? 1881789
邀请新用户注册赠送积分活动 933952
科研通“疑难数据库(出版商)”最低求助积分说明 840616