清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Impact of Discrepancies between Offerors’ Self-Disclosure and Customers’ Reviews on Online Sales of Experiences in Sharing Economy

利用 营销 多样性(政治) 口头传述的 共享经济 质量(理念) 感知 业务 计算机科学 万维网 心理学 社会学 哲学 计算机安全 认识论 神经科学 人类学
作者
Yiru Wang,Yilong Zheng,Xun Xu
出处
期刊:International Journal of Electronic Commerce [Taylor & Francis]
卷期号:27 (4): 469-499 被引量:5
标识
DOI:10.1080/10864415.2023.2255109
摘要

ABSTRACTExperience sharing is becoming popular as customers increasingly respond to the rapid platform technology development. However, because of format diversity and quality variation, customers refer to multiple information sources before booking. Two of the most important information sources are the hosts' self-disclosure texts about the experience project and customers' online reviews. Using natural language processing (NLP) techniques, we analyze the data from Airbnb experience projects. We find that the information discrepancies in hosts' self-disclosure texts of the experience project and customers' online reviews, in terms of their focus on the attributes of products and services and the linguistic styles, exist, and these discrepancies affect sales. Hosts elaborate more on the descriptive attributes, whereas customers focus mainly on individual perceptions in their reviews. Customers also write online reviews in a more concise, diverse, and relaxed fashion, conveying positive emotion and a more subjective tone than expressed by hosts' project descriptions. Additionally, a large topic difference, reflected by customers' more details about various attributes elaborated in their online reviews compared with the attributes described by the hosts in the project description, increases sales. Further, a larger discrepancy in length and diversity increases sales, whereas a larger discrepancy in subjectivity reduces sales. Compared with the online mode, the in-person mode strengthens the impact of content and linguistic discrepancies on sales. This study's findings will help hosts and sharing economy platforms use a relative approach to optimize their information provision and exploit the electronic word-of-mouth effect to improve customers' online purchase intention and behavior.KEYWORDS AND PHRASES: Information provisiononline self-disclosureonline reviewsexperience sharingsharing economytext miningexperience economyonline platforms Disclosure statementNo potential conflict of interest was reported by the author(s).SUPPLEMENTARY MATERIALSupplemental data for this article can be accessed online at https://doi.org/10.1080/10864415.2023.2255109Additional informationNotes on contributorsYiru WangYiru Wang (yiru.wang@oswego.edu) is an assistant professor of marketing at the State University of New York at Oswego. She holds a Ph.D. in marketing from Kent State University. Dr. Wang's research interests center on platform economy, including online word-of-mouth, user–platform interactions, and the sharing economy. She has published in such journals as Journal of Advertising Research and Public Health.Yilong ZhengYilong Zheng (zhengy@merrimack.edu) is an assistant professor of marketing at Merrimack College. He holds a Ph.D. in marketing from the State University of New York at Binghamton. Dr. Zheng's research focuses on collective wisdom in crowdsourcing, entrepreneurial marketing, digital analytics education, and wine marketing. He has published in such journals as Computers in Human Behavior, Journal of Business Research, Issues in Information Systems, and Marketing Education Review.Xun XuXun Xu (xunxu@csudh.edu; corresponding author) is an associate professor in the Department of Information Systems and Operations Management in the College of Business Administration and Public Policy at California State University, Dominguez Hills. He holds a Ph.D. in operations management from Washington State University. Dr. Xu's research interests include service operations management, supply chain management and coordination, sustainability, e-commerce, data and text mining, and hospitality and tourism management. He has published more than 60 papers in such journals as Decision Sciences, Decision Support Systems, European Journal of Operational Research, Information and Management, International Journal of Electronic Commerce, International Journal of Hospitality Management, International Journal of Information Management, International Journal of Production Economics, International Journal of Production Research, Journal of the Operational Research Society, Journal of Travel Research, Omega, Technovation, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糟糕的翅膀完成签到,获得积分10
5秒前
王琦发布了新的文献求助10
9秒前
小西完成签到 ,获得积分10
12秒前
CHANG完成签到 ,获得积分10
22秒前
移动马桶完成签到 ,获得积分10
24秒前
酷波er应助科研通管家采纳,获得10
40秒前
pagemao完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助调皮帆布鞋采纳,获得10
1分钟前
元秋发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
迟雨烟暮完成签到 ,获得积分10
2分钟前
健康的妙菱完成签到,获得积分10
2分钟前
烟消云散完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
小王发布了新的文献求助10
4分钟前
sino-ft完成签到,获得积分10
4分钟前
元秋完成签到,获得积分10
4分钟前
sino-ft发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
轻松小张应助科研通管家采纳,获得200
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
滕皓轩完成签到 ,获得积分20
5分钟前
羊_应助sino-ft采纳,获得10
5分钟前
轻松小张完成签到,获得积分10
5分钟前
dandan完成签到,获得积分10
5分钟前
含糊的茹妖完成签到 ,获得积分0
6分钟前
研友_Z7XY28完成签到 ,获得积分0
6分钟前
Arthur完成签到 ,获得积分10
7分钟前
天天快乐应助花花采纳,获得10
7分钟前
花花完成签到 ,获得积分10
7分钟前
8分钟前
科研通AI5应助调皮帆布鞋采纳,获得30
8分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843264
求助须知:如何正确求助?哪些是违规求助? 3385497
关于积分的说明 10540702
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710881
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308