Integrative analysis from multi‐center studies identifies a weighted gene co‐expression network analysis‐based Tregs signature in ovarian cancer

免疫疗法 免疫系统 肿瘤微环境 恶性肿瘤 生物 卵巢癌 CD8型 癌症研究 癌症 肿瘤科 免疫学 医学 内科学
作者
Yang Cao,Yinglei Liu,Xiaoyan Lu,Haili Kai,Yun Han,Yanli Zheng
出处
期刊:Environmental Toxicology [Wiley]
卷期号:39 (2): 736-750 被引量:1
标识
DOI:10.1002/tox.23948
摘要

Abstract Ovarian cancer (OC) is a malignancy associated with poor prognosis and has been linked to regulatory T cells (Tregs) in the immune microenvironment. Nevertheless, the association between Tregs‐related genes (TRGs) and OC prognosis remains incompletely understood. The xCell algorithm was used to analyze Tregs scores across multiple cohorts. Weighted gene co‐expression network analysis (WGCNA) was utilized to identify potential TRGs and molecular subtypes. Furthermore, we used nine machine learning algorithms to create risk models with prognostic indicators for patients. Reverse transcription‐quantitative polymerase chain reaction and immunofluorescence staining were used to demonstrate the immunosuppressive ability of Tregs and the expression of key TRGs in clinical samples. Our study found that higher Tregs scores were significantly correlated with poorer overall survival. Recurrent patients exhibited increased Tregs infiltration and reduced CD8 + T cell. Moreover, molecular subtyping using seven key TRGs revealed that subtype B exhibited higher enrichment of multiple oncogenic pathways and had a worse prognosis. Notably, subtype B exhibited high Tregs levels, suggesting immune suppression. In addition, we validated machine learning‐derived prognostic models across multiple platform cohorts to better distinguish patient survival and predict immunotherapy efficacy. Finally, the differential expression of key TRGs was validated using clinical samples. Our study provides novel insights into the role of Tregs in the immune microenvironment of OC. We identified potential therapeutic targets derived from Tregs (CD24, FHL2, GPM6A, HOXD8, NAP1L5, REN, and TOX3) for personalized treatment and created a machining learning‐based prognostic model for OC patients, which could be useful in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZ发布了新的文献求助10
1秒前
2秒前
高高发布了新的文献求助10
4秒前
Hello应助黄辉冯采纳,获得10
4秒前
ycw7777完成签到,获得积分10
5秒前
Wang完成签到,获得积分10
6秒前
牛逼man完成签到,获得积分10
7秒前
xupeng发布了新的文献求助10
7秒前
7秒前
pp发布了新的文献求助10
7秒前
lalala完成签到,获得积分10
8秒前
ZZ完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
10秒前
huayan发布了新的文献求助10
11秒前
11秒前
黑炭球应助xupeng采纳,获得10
13秒前
14秒前
小宋发布了新的文献求助30
15秒前
duan123456发布了新的文献求助10
15秒前
苗条中蓝完成签到,获得积分10
16秒前
现代鸣凤完成签到,获得积分20
16秒前
高高完成签到,获得积分20
20秒前
初心发布了新的文献求助10
20秒前
lcdamoy完成签到,获得积分10
20秒前
李爱国应助huayan采纳,获得10
20秒前
聪慧的凡灵应助susu采纳,获得20
22秒前
爱听歌凤灵完成签到,获得积分10
22秒前
简单的静枫给简单的静枫的求助进行了留言
22秒前
manfullmoon完成签到,获得积分10
23秒前
今后应助duan123456采纳,获得10
26秒前
干大事的小喽啰完成签到,获得积分10
27秒前
28秒前
李爱国应助科研通管家采纳,获得10
28秒前
28秒前
星辰大海应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
pp发布了新的文献求助10
29秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897131
求助须知:如何正确求助?哪些是违规求助? 3440984
关于积分的说明 10819523
捐赠科研通 3165972
什么是DOI,文献DOI怎么找? 1749073
邀请新用户注册赠送积分活动 845104
科研通“疑难数据库(出版商)”最低求助积分说明 788429