Deployment Optimization of Intelligent Wireless Sensor Network Using Graph Similarity Based on Multi-Granularity Cross Representation and Matching

无线传感器网络 粒度 计算机科学 图形 数据挖掘 匹配(统计) Blossom算法 软件部署 理论计算机科学 数学 计算机网络 统计 操作系统
作者
Hefei Gao,Naiyu Cui,Wei Wang
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 1378-1390
标识
DOI:10.1109/tnet.2023.3314497
摘要

Intelligent wireless sensor networks often face challenges such as redundancy and non-uniform deployment of sensor nodes, which can negatively impact monitoring performance and energy consumption. To address these challenges, we propose a novel method for identifying the sensor nodes that contribute the most to the monitoring quality of the network. It utilizes graph topology to transform the contribution weights of sensor nodes into the similarity of perturbation-based graphs. And we propose a multi-granularity cross representation and matching method to predict graph similarity, which consists of two stages: representation and matching. In the representation stage, we generate rich multi-granularity interaction features between graph pairs. In the matching stage, we integrate these features into higher-order and more abstract matching features for similarity prediction. To further evaluate the contribution weights of sensor nodes, we combine the obtained graph similarities with the weighted PageRank algorithm. The experimental results demonstrate that our algorithm effectively selects the nodes with greater contribution, leading to good monitoring quality and network performance. Moreover, compared with classical deployment optimization algorithms, the nodes selected by our algorithm are more representative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助高高的魔镜采纳,获得10
1秒前
1秒前
3秒前
3秒前
赘婿应助szh123采纳,获得10
3秒前
6秒前
zhouzhou发布了新的文献求助10
7秒前
柯南风发布了新的文献求助10
7秒前
唯梦发布了新的文献求助10
8秒前
feiying88完成签到,获得积分10
8秒前
8秒前
11秒前
11秒前
LB发布了新的文献求助10
12秒前
AmberShine完成签到,获得积分10
13秒前
爱笑的觅双完成签到,获得积分10
14秒前
Mandyan发布了新的文献求助30
15秒前
kk发布了新的文献求助10
16秒前
Nicole完成签到,获得积分10
16秒前
17秒前
善学以致用应助彬子采纳,获得10
19秒前
21秒前
fuguier发布了新的文献求助10
21秒前
酷波er应助月月鸟采纳,获得10
21秒前
吨吨完成签到,获得积分10
22秒前
koitoyu发布了新的文献求助10
22秒前
lyyyyy完成签到,获得积分20
24秒前
lili发布了新的文献求助10
25秒前
26秒前
科研通AI5应助wjx采纳,获得10
27秒前
科研通AI5应助wjx采纳,获得10
27秒前
SciGPT应助wjx采纳,获得10
28秒前
科研通AI5应助wjx采纳,获得10
28秒前
科研通AI5应助wjx采纳,获得10
28秒前
Jasper应助wjx采纳,获得10
28秒前
香蕉觅云应助wjx采纳,获得10
28秒前
大模型应助wjx采纳,获得10
28秒前
华仔应助wjx采纳,获得10
28秒前
Lucas应助wjx采纳,获得10
28秒前
28秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829200
求助须知:如何正确求助?哪些是违规求助? 3371893
关于积分的说明 10469615
捐赠科研通 3091524
什么是DOI,文献DOI怎么找? 1701149
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770753