已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DaCapo: An On-Device Learning Scheme for Memory-Constrained Embedded Systems

计算机科学 反向传播 静态随机存取存储器 微控制器 方案(数学) 人工神经网络 深度学习 图层(电子) 嵌入式系统 人工智能 计算机硬件 数学 数学分析 有机化学 化学
作者
Osama Khan,Gwanjong Park,Euiseong Seo
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:22 (5s): 1-23 被引量:5
标识
DOI:10.1145/3609121
摘要

The use of deep neural network (DNN) applications in microcontroller unit (MCU) embedded systems is getting popular. However, the DNN models in such systems frequently suffer from accuracy loss due to the dataset shift problem. On-device learning resolves this problem by updating the model parameters on-site with the real-world data, thus localizing the model to its surroundings. However, the backpropagation step during on-device learning requires the output of every layer computed during the forward pass to be stored in memory. This is usually infeasible in MCU devices as they are equipped only with a few KBs of SRAM. Given their energy limitation and the timeliness requirements, using flash memory to store the output of every layer is not practical either. Although there have been proposed a few research results to enable on-device learning under stringent memory conditions, they require the modification of the target models or the use of non-conventional gradient computation strategies. This paper proposes DaCapo, a backpropagation scheme that enables on-device learning in memory-constrained embedded systems. DaCapo stores only the output of certain layers, known as checkpoints, in SRAM, and discards the others. The discarded outputs are recomputed during backpropagation from the nearest checkpoint in front of them. In order to minimize the recomputation occurrences, DaCapo optimally plans the checkpoints to be stored in the SRAM area at a particular phase of the backpropagation and thus replaces the checkpoints stored in memory as the backpropagation progresses. We implemented the proposed scheme in an STM32F429ZI board and evaluated it with five representative DNN models. Our evaluation showed that DaCapo improved backpropagation time by up to 22% and saved energy consumption by up to 28% in comparison to AIfES, a machine learning platform optimized for MCU devices. In addition, our proposed approach enabled the training of MobileNet, which the MCU device had been previously unable to train.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zenmefeishi完成签到 ,获得积分10
刚刚
123zyx完成签到 ,获得积分10
1秒前
FireNow发布了新的文献求助10
1秒前
1秒前
在水一方应助周敏杰采纳,获得10
2秒前
请扣一发布了新的文献求助10
3秒前
平淡夏云发布了新的文献求助10
3秒前
5秒前
sxr发布了新的文献求助10
5秒前
小二郎应助xxx采纳,获得10
8秒前
小葵花完成签到 ,获得积分10
9秒前
123关注了科研通微信公众号
9秒前
Burke完成签到 ,获得积分10
10秒前
WangLu2025完成签到 ,获得积分10
11秒前
传奇3应助Laputa采纳,获得10
13秒前
14秒前
zgtmark完成签到,获得积分10
16秒前
16秒前
Akim应助晓晓鹤采纳,获得10
18秒前
xiaofeiyan发布了新的文献求助10
18秒前
zb完成签到,获得积分10
19秒前
852应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得30
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
21秒前
21秒前
活泼的面包完成签到 ,获得积分10
21秒前
肖亚鑫发布了新的文献求助10
22秒前
海贼学术完成签到 ,获得积分10
22秒前
赘婿应助tudou采纳,获得10
24秒前
香蕉觅云应助单薄的雁风采纳,获得10
25秒前
26秒前
27秒前
自由寒云完成签到,获得积分10
27秒前
28秒前
肖亚鑫完成签到,获得积分10
29秒前
夏惋清完成签到 ,获得积分0
31秒前
xp1911发布了新的文献求助10
32秒前
开心蛋挞完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702