Neuronetwork Approach in the Early Diagnosis of Depression.

卷积神经网络 萧条(经济学) 人工智能 计算机科学 深度学习 脑电图 体素 心理学 机器学习 认知心理学 精神科 经济 宏观经济学
作者
Darya Astafeva,Arseny Gayduk,Giuseppe Tavormina,Timur Syunyakov,Oxana Chigareva,Kseniya Bikbaeva,Ekaterina Markina,Andrei Vlasov,Anna Yashikhina,E. V. Zhovnerchuk,А. В. Колсанов,Daria Smirnova
出处
期刊:PubMed 卷期号:35 (Suppl 2): 77-85 被引量:4
链接
标识
摘要

Depression is a common mental illness, with around 280 million people suffering from depression worldwide. At present, the main way to quantify the severity of depression is through psychometric scales, which entail subjectivity on the part of both patient and clinician. In the last few years, deep (machine) learning is emerging as a more objective approach for measuring depression severity. We now investigate how neural networks might serve for the early diagnosis of depression.We searched Medline (Pubmed) for articles published up to June 1, 2023. The search term included Depression AND Diagnostics AND Artificial Intelligence. We did not search for depression studies of machine learning other than neural networks, and selected only those papers attesting to diagnosis or screening for depression.Fifty-four papers met our criteria, among which 14 using facial expression recordings, 14 using EEG, 5 using fMRI, and 5 using audio speech recording analysis, whereas 6 used multimodality approach, two were the text analysis studies, and 8 used other methods.Research methodologies include both audio and video recordings of clinical interviews, task performance, including their subsequent conversion into text, and resting state studies (EEG, MRI, fMRI). Convolutional neural networks (CNN), including 3D-CNN and 2D-CNN, can obtain diagnostic data from the videos of the facial area. Deep learning in relation to EEG signals is the most commonly used CNN. fMRI approaches use graph convolutional networks and 3D-CNN with voxel connectivity, whereas the text analyses use CNNs, including LSTM (long/short-term memory). Audio recordings are analyzed by a hybrid CNN and support vector machine model. Neural networks are used to analyze biomaterials, gait, polysomnography, ECG, data from wrist wearable devices, and present illness history records. Multimodality studies analyze the fusion of audio features with visual and textual features using LSTM and CNN architectures, a temporal convolutional network, or a recurrent neural network. The accuracy of different hybrid and multimodality models is 78-99%, relative to the standard clinical diagnoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jennier完成签到,获得积分10
1秒前
1秒前
didi完成签到,获得积分10
1秒前
2秒前
2秒前
李健的小迷弟应助qq采纳,获得10
2秒前
2秒前
鲤鱼向日葵完成签到,获得积分10
3秒前
yolanda完成签到,获得积分10
3秒前
个性的紫菜应助加缪采纳,获得70
3秒前
4秒前
4秒前
思源应助ylhwn采纳,获得10
4秒前
魔幻的早晨完成签到,获得积分10
4秒前
666发布了新的文献求助10
4秒前
xu发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
6秒前
Peng完成签到,获得积分20
6秒前
大个应助cl采纳,获得10
6秒前
7秒前
7秒前
7秒前
所所应助可靠的0采纳,获得10
7秒前
7秒前
7秒前
虚幻的素完成签到 ,获得积分10
8秒前
czh发布了新的文献求助10
9秒前
9秒前
9秒前
prisoner发布了新的文献求助10
9秒前
耶卷发布了新的文献求助10
9秒前
jellorio发布了新的文献求助10
9秒前
9秒前
天天快乐应助刻苦棉花糖采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4835575
求助须知:如何正确求助?哪些是违规求助? 4139231
关于积分的说明 12812713
捐赠科研通 3883419
什么是DOI,文献DOI怎么找? 2135490
邀请新用户注册赠送积分活动 1155584
关于科研通互助平台的介绍 1054989