Image reconstruction using UNET-transformer network for fast and low-dose PET scans

人工智能 计算机科学 均方误差 图像质量 基本事实 迭代重建 残余物 成像体模 最大后验估计 模式识别(心理学) 计算机视觉 数学 核医学 算法 图像(数学) 统计 医学 最大似然
作者
Sanaz Kaviani,Amirhossein Sanaat,Mersede Mokri,Claire Cohalan,Jean‐François Carrier
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:110: 102315-102315 被引量:8
标识
DOI:10.1016/j.compmedimag.2023.102315
摘要

Low-dose and fast PET imaging (low-count PET) play a significant role in enhancing patient safety, healthcare efficiency, and patient comfort during medical imaging procedures. To achieve high-quality images with low-count PET scans, effective reconstruction models are crucial for denoising and enhancing image quality. The main goal of this paper is to develop an effective and accurate deep learning-based method for reconstructing low-count PET images, which is a challenging problem due to the limited amount of available data and the high level of noise in the acquired images. The proposed method aims to improve the quality of reconstructed PET images while preserving important features, such as edges and small details, by combining the strengths of UNET and Transformer networks. The proposed TrUNET-MAPEM model integrates a residual UNET-transformer regularizer into the unrolled maximum a posteriori expectation maximization (MAPEM) algorithm for PET image reconstruction. A loss function based on a combination of structural similarity index (SSIM) and mean squared error (MSE) is utilized to evaluate the accuracy of the reconstructed images. The simulated dataset was generated using the Brainweb phantom, while the real patient dataset was acquired using a Siemens Biograph mMR PET scanner. We also implemented state-of-the-art methods for comparison purposes: OSEM, MAPOSEM, and supervised learning using 3D-UNET network. The reconstructed images are compared to ground truth images using metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and relative root mean square error (rRMSE) to quantitatively evaluate the accuracy of the reconstructed images. Our proposed TrUNET-MAPEM approach was evaluated using both simulated and real patient data. For the patient data, our model achieved an average PSNR of 33.72 dB, an average SSIM of 0.955, and an average rRMSE of 0.39. These results outperformed other methods which had average PSNRs of 36.89 dB, 34.12 dB, and 33.52 db, average SSIMs of 0.944, 0.947, and 0.951, and average rRMSEs of 0.59, 0.49, and 0.42. For the simulated data, our model achieved an average PSNR of 31.23 dB, an average SSIM of 0.95, and an average rRMSE of 0.55. These results also outperformed other state-of-the-art methods, such as OSEM, MAPOSEM, and 3DUNET-MAPEM. The model demonstrates the potential for clinical use by successfully reconstructing smooth images while preserving edges. The comparison with other methods demonstrates the superiority of our approach, as it outperforms all other methods for all three metrics. The proposed TrUNET-MAPEM model presents a significant advancement in the field of low-count PET image reconstruction. The results demonstrate the potential for clinical use, as the model can produce images with reduced noise levels and better edge preservation compared to other reconstruction and post-processing algorithms. The proposed approach may have important clinical applications in the early detection and diagnosis of various diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aniver完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
无花果应助己凡采纳,获得10
1秒前
huhantong发布了新的文献求助10
1秒前
2秒前
墨尘发布了新的文献求助20
3秒前
今后应助耿耿采纳,获得10
3秒前
馆长应助兰乖乖采纳,获得30
5秒前
5秒前
5秒前
5秒前
幕帆应助wbh采纳,获得20
5秒前
小青椒应助wbh采纳,获得20
5秒前
万能图书馆应助wbh采纳,获得10
5秒前
bbb发布了新的文献求助10
6秒前
黄健丰完成签到,获得积分10
6秒前
6秒前
归陌完成签到 ,获得积分10
6秒前
牧研发布了新的文献求助200
8秒前
心机之蛙完成签到 ,获得积分20
9秒前
江生完成签到 ,获得积分10
10秒前
彭于晏应助shinvkuo采纳,获得10
10秒前
Lucas应助滾滾采纳,获得10
12秒前
12秒前
负责笑南发布了新的文献求助10
12秒前
合适荆发布了新的文献求助10
12秒前
张诗雨完成签到 ,获得积分10
13秒前
Owen应助Chaos采纳,获得10
14秒前
眼睛大怀曼完成签到,获得积分10
15秒前
16秒前
melody完成签到,获得积分10
17秒前
wanderer发布了新的文献求助10
17秒前
18秒前
19秒前
草莓莓莓完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
孤独惜海完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951965
求助须知:如何正确求助?哪些是违规求助? 4214639
关于积分的说明 13109385
捐赠科研通 3996196
什么是DOI,文献DOI怎么找? 2187420
邀请新用户注册赠送积分活动 1202706
关于科研通互助平台的介绍 1115578