数学
海森伯群
基质(化学分析)
有界函数
可逆矩阵
小波
操作员(生物学)
纯数学
仿射变换
群(周期表)
域代数上的
小波
数学分析
离散小波变换
小波变换
计算机科学
物理
生物化学
化学
材料科学
抑制因子
量子力学
人工智能
转录因子
复合材料
基因
作者
Divya Jindal,Jyoti,Lalit Kumar Vashisht
标识
DOI:10.1142/s0219691323500224
摘要
We study nonstationary frames of matrix-valued Gabor systems and wavelet systems in the matrix-valued function space [Formula: see text]. First, we show that a diagonal matrix-valued window function constitutes a frame for [Formula: see text] whenever each diagonal entry constitutes a frame for the space [Formula: see text]. This is not true for arbitrary nonzero matrix-valued function. Using this, we prove the existence of nonstationary matrix-valued Gabor frames associated with the Weyl–Heisenberg group in terms of density of real numbers. We give a representation of the frame operator of matrix-valued nonstationary Gabor system. A necessary condition with explicit frame bounds for nonstationary matrix-valued Gabor frames associated with the Weyl–Heisenberg group is given. We discuss matrix-valued frame preserving maps in terms of adjointablity, with respect to the matrix-valued inner product, of bounded linear operators acting on [Formula: see text]. It is shown that the image of a matrix-valued Gabor frame under bounded, linear and invertible operator on [Formula: see text] may not be a frame for [Formula: see text]. In this direction, we give sufficient conditions on bounded linear operators which can preserve frame conditions. Finally, we give necessary and sufficient condition for the existence of nonstationary matrix-valued wavelet frames associated with the extended affine group.
科研通智能强力驱动
Strongly Powered by AbleSci AI