亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating Language Guidance Into Image-Text Matching for Correcting False Negatives

计算机科学 人工智能 水准点(测量) 判决 自然语言处理 匹配(统计) 图像(数学) 模式识别(心理学) 数学 大地测量学 统计 地理
作者
Zheng Li,Caili Guo,Zerun Feng,Jenq‐Neng Hwang,Zhongtian Du
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 103-116 被引量:14
标识
DOI:10.1109/tmm.2023.3261443
摘要

Image-Text Matching (ITM) aims to establish the correspondence between images and sentences. ITM is fundamental to various vision and language understanding tasks. However, there are limitations in the way existing ITM benchmarks are constructed. The ITM benchmark collects pairs of images and sentences during construction. Therefore, only samples that are paired at collection are annotated as positive. All other samples are annotated as negative. Many correlations are missed in these samples that are annotated as negative. For example, a sentence matches only one image at the time of collection. Only this image is annotated as positive for the sentence. All other images are annotated as negative. However, these negative images may contain images that correspond to the sentences. These mislabeled samples are called false negatives . Existing ITM models are optimized based on annotations containing mislabels, which can introduce noise during training. In this paper, we propose an ITM framework integrating Language Guidance ( LG ) for correcting false negatives. A language pre-training model is introduced into the ITM framework to identify false negatives. To correct false negatives, we propose language guidance loss, which adaptively corrects the locations of false negatives in the visual-semantic embedding space. Extensive experiments on two ITM benchmarks show that our method can improve the performance of existing ITM models. To verify the performance of correcting false negatives, we conduct further experiments on ECCV Caption. ECCV Caption is a verified dataset where false negatives in annotations have been corrected. The experimental results show that our method can recall more relevant false negatives. The code is available at https://github.com/AAA-Zheng/LG_ITM .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
枣树先生完成签到 ,获得积分10
2秒前
刘可涛发布了新的文献求助10
2秒前
舒心新儿发布了新的文献求助10
4秒前
AprilLeung完成签到 ,获得积分10
6秒前
深情安青应助舒心新儿采纳,获得10
12秒前
易大人完成签到 ,获得积分10
13秒前
13秒前
13秒前
可乐完成签到,获得积分20
14秒前
可乐发布了新的文献求助10
18秒前
21秒前
21秒前
舒心新儿完成签到,获得积分10
21秒前
谨慎的白秋完成签到,获得积分10
25秒前
26秒前
28秒前
darkpigx发布了新的文献求助50
28秒前
CipherSage应助刘可涛采纳,获得10
29秒前
俭朴山灵完成签到 ,获得积分10
34秒前
徐志豪完成签到,获得积分20
35秒前
36秒前
36秒前
量子星尘发布了新的文献求助10
37秒前
烟花应助徐志豪采纳,获得10
40秒前
yzbbb发布了新的文献求助10
40秒前
馆长应助科研通管家采纳,获得30
40秒前
Jasper应助科研通管家采纳,获得30
41秒前
汉堡包应助科研通管家采纳,获得10
41秒前
英姑应助科研通管家采纳,获得10
41秒前
besatified发布了新的文献求助10
41秒前
44秒前
48秒前
darkpigx完成签到,获得积分10
50秒前
51秒前
多边棱发布了新的文献求助10
54秒前
美丽的白薇完成签到,获得积分10
54秒前
yyy完成签到 ,获得积分10
56秒前
胜胜糖完成签到 ,获得积分10
1分钟前
枝头树上的布谷鸟完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4652552
求助须知:如何正确求助?哪些是违规求助? 4039548
关于积分的说明 12493884
捐赠科研通 3729895
什么是DOI,文献DOI怎么找? 2058868
邀请新用户注册赠送积分活动 1089614
科研通“疑难数据库(出版商)”最低求助积分说明 970685