水文地质学
地下水
土壤盐分
环境科学
水文学(农业)
渗透(HVAC)
灌溉
地下水模型
土壤科学
地质学
土壤水分
地下水流
含水层
岩土工程
地理
气象学
生态学
生物
作者
Haidong Lian,Zhaojun Sun,Cundong Xu,Fengyou Gu,Zijin Liu,Jun He
标识
DOI:10.2166/hydro.2023.142
摘要
Abstract Aiming at problems such as inaccurate simulation of groundwater level in closed hydrogeological units, difficult quantitative prediction of soil salinization degree, and unclear water and salt migration, a three-dimensional simulation model of groundwater was established, and the development trend of groundwater level and soil salinization was predicted. The groundwater level simulation results are consistent with the changing trend of the observational data and the simulation model can be used to predict groundwater levels in closed hydrogeological units. When climate scenarios and human activity change are set as future scenarios, the average groundwater buried depth will continue to decrease in the next 10 years, the area with a groundwater buried depth of 0–5 m will exceed 50%, and even the groundwater will overflow to the surface. The change of soil salt content is predicted quantitatively and the salinization degree will develop from ‘saline–alkali soil’ and ‘mild saline–alkali soil’ to ‘medium saline–alkali soil’. The process of water and salt migration in three key hydrologic zones, namely ‘irrigation infiltration’, ‘solute migration’, and ‘water and salt accumulation’, is revealed in the closed hydrogeological unit. The research results can provide new ideas for the improvement of soil and water environment problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI