LatXGen: Toward Radiation-Free and Accurate Quantitative Analysis of Sagittal Spinal Alignment via Cross-Modal Radiographic View Synthesis

作者
Moxin Zhao,Nan Meng,Jason Pui Yin Cheung,Chris Yuk Kwan Tang,Chenxi Yu,Wenting Zhong,Pengyu Lu,Chang Liang Shi,Yunying Zhuang,Teng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (12): 8599-8606 被引量:1
标识
DOI:10.1109/jbhi.2025.3613010
摘要

Adolescent Idiopathic Scoliosis (AIS) is a complex three-dimensional spinal deformity, and accurate morphological assessment requires evaluating both coronal and sagittal alignment. While previous research has made significant progress in developing radiation-free methods for coronal plane assessment, reliable and accurate evaluation of sagittal alignment without ionizing radiation remains largely underexplored. To address this gap, we propose LatXGen, a novel generative framework that synthesizes realistic lateral spinal radiographs from posterior Red-Green-Blue and Depth (RGBD) images of unclothed backs. This enables accurate, radiation-free estimation of sagittal spinal alignment. LatXGen tackles two core challenges: (1) inferring sagittal spinal morphology changes from a lateral perspective based on posterior surface geometry, and (2) performing cross-modality translation from RGBD input to the radiographic domain. The framework adopts a dual-stage architecture that progressively estimates lateral spinal structure and synthesizes corresponding radiographs. To enhance anatomical consistency, we introduce an attention-based Fast Fourier Convolution (FFC) module for integrating anatomical features from RGBD images and 3D landmarks, and a Spatial Deformation Network (SDN) to model morphological variations in the lateral view. Additionally, we construct the first large-scale paired dataset for this task, comprising 3,264 RGBD and lateral radiograph pairs. Experimental results demonstrate that LatXGen produces anatomically accurate radiographs and outperforms existing GAN-based methods in both visual fidelity and quantitative metrics. This study offers a promising, radiation-free solution for sagittal spine assessment and advances comprehensive AIS evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang完成签到 ,获得积分10
刚刚
liwang完成签到,获得积分10
1秒前
1秒前
czr完成签到,获得积分10
1秒前
xingyecao完成签到,获得积分10
2秒前
年轻的冷雁完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
4秒前
CodeCraft应助张佳宁采纳,获得10
4秒前
5秒前
Gj完成签到,获得积分10
6秒前
平淡念瑶发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
上官若男应助三白眼采纳,获得10
7秒前
FashionBoy应助ssy采纳,获得10
7秒前
7秒前
XYin完成签到,获得积分10
8秒前
转转发布了新的文献求助10
9秒前
斯文败类应助zrr采纳,获得20
10秒前
杨德帅发布了新的文献求助10
10秒前
pluto应助小鱼美美采纳,获得10
11秒前
12秒前
您吃了吗完成签到 ,获得积分10
12秒前
皛燚完成签到,获得积分10
13秒前
淡淡新竹完成签到,获得积分10
13秒前
14秒前
小伙子完成签到,获得积分10
14秒前
14秒前
田様应助杨德帅采纳,获得10
15秒前
17秒前
过时的广山完成签到 ,获得积分10
17秒前
yyyyj发布了新的文献求助20
17秒前
赘婿应助高高的元容采纳,获得10
18秒前
18秒前
曾经一笑完成签到,获得积分10
19秒前
19秒前
三白眼发布了新的文献求助10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736993
求助须知:如何正确求助?哪些是违规求助? 5369908
关于积分的说明 15334507
捐赠科研通 4880710
什么是DOI,文献DOI怎么找? 2622987
邀请新用户注册赠送积分活动 1571843
关于科研通互助平台的介绍 1528696