A combined non‐enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub‐centimeter pulmonary solid nodules

无线电技术 医学 接收机工作特性 放射科 结核(地质) 置信区间 恶性肿瘤 数据集 核医学 人工智能 计算机科学 病理 内科学 古生物学 生物
作者
Rui‐Yu Lin,Yineng Zheng,Fajin Lv,B. Fu,Wang-jia Li,Zhang‐Rui Liang,Zhi‐gang Chu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2835-2843 被引量:8
标识
DOI:10.1002/mp.16316
摘要

Abstract Background Radiomics has been used to predict pulmonary nodule (PN) malignancy. However, most of the studies focused on pulmonary ground‐glass nodules. The use of computed tomography (CT) radiomics in pulmonary solid nodules, particularly sub‐centimeter solid nodules, is rare. Purpose This study aims to develop a radiomics model based on non‐enhanced CT images that can distinguish between benign and malignant sub‐centimeter pulmonary solid nodules (SPSNs, <1 cm). Methods The clinical and CT data of 180 SPSNs confirmed by pathology were analyzed retrospectively. All SPSNs were divided into two groups: training set ( n = 144) and testing set ( n = 36). From non‐enhanced chest CT images, over 1000 radiomics features were extracted. Radiomics feature selection was performed using the analysis of variance and principal component analysis. The selected radiomics features were fed into a support vector machine (SVM) to develop a radiomics model. The clinical and CT characteristics were used to develop a clinical model. Associating non‐enhanced CT radiomics features with clinical factors were used to develop a combined model using SVM. The performance was evaluated using the area under the receiver‐operating characteristic curve (AUC). Results The radiomics model performed well in distinguishing between benign and malignant SPSNs, with an AUC of 0.913 (95% confidence interval [CI], 0.862–0.954) in the training set and an AUC of 0.877 (95% CI, 0.817–0.924) in the testing set. The combined model outperformed the clinical and radiomics models with an AUC of 0.940 (95% CI, 0.906–0.969) in the training set and an AUC of 0.903 (95% CI, 0.857–0.944) in the testing set. Conclusions Radiomics features based on non‐enhanced CT images can be used to differentiate SPSNs. The combined model, which included radiomics and clinical factors, had the best discrimination power between benign and malignant SPSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猜不猜不完成签到 ,获得积分10
刚刚
fly发布了新的文献求助10
2秒前
彭于晏应助迅速向日葵采纳,获得10
2秒前
西瓜完成签到 ,获得积分10
6秒前
10秒前
无私逊发布了新的文献求助10
16秒前
Dotson完成签到,获得积分10
18秒前
Lisztan完成签到,获得积分10
18秒前
19秒前
蛋卷完成签到 ,获得积分10
23秒前
无私逊完成签到,获得积分10
24秒前
e746700020完成签到,获得积分10
25秒前
幽默的依秋完成签到,获得积分10
25秒前
25秒前
绮岺完成签到,获得积分10
32秒前
34秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
40秒前
wanghao完成签到 ,获得积分10
40秒前
zhang完成签到,获得积分10
45秒前
彭于晏应助123采纳,获得10
45秒前
可爱的函函应助琉個琪采纳,获得10
48秒前
研友_VZG7GZ应助迅速向日葵采纳,获得10
48秒前
打打应助科研通管家采纳,获得10
53秒前
余味应助科研通管家采纳,获得10
53秒前
余味应助科研通管家采纳,获得10
53秒前
judy完成签到,获得积分10
54秒前
苯二氮卓完成签到,获得积分10
58秒前
58秒前
1分钟前
琉個琪发布了新的文献求助10
1分钟前
gmjinfeng完成签到,获得积分0
1分钟前
1分钟前
zw完成签到,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
轻松诗霜完成签到 ,获得积分10
1分钟前
听寒完成签到,获得积分10
1分钟前
老姚完成签到,获得积分10
1分钟前
1分钟前
652183758完成签到 ,获得积分10
1分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329557
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726