清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A combined non‐enhanced CT radiomics and clinical variable machine learning model for differentiating benign and malignant sub‐centimeter pulmonary solid nodules

无线电技术 医学 接收机工作特性 放射科 结核(地质) 置信区间 恶性肿瘤 数据集 核医学 人工智能 计算机科学 病理 内科学 生物 古生物学
作者
Rui‐Yu Lin,Yineng Zheng,Fajin Lv,Bin‐Jie Fu,Wang-jia Li,Zhang‐Rui Liang,Zhi‐gang Chu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 2835-2843 被引量:9
标识
DOI:10.1002/mp.16316
摘要

Abstract Background Radiomics has been used to predict pulmonary nodule (PN) malignancy. However, most of the studies focused on pulmonary ground‐glass nodules. The use of computed tomography (CT) radiomics in pulmonary solid nodules, particularly sub‐centimeter solid nodules, is rare. Purpose This study aims to develop a radiomics model based on non‐enhanced CT images that can distinguish between benign and malignant sub‐centimeter pulmonary solid nodules (SPSNs, <1 cm). Methods The clinical and CT data of 180 SPSNs confirmed by pathology were analyzed retrospectively. All SPSNs were divided into two groups: training set ( n = 144) and testing set ( n = 36). From non‐enhanced chest CT images, over 1000 radiomics features were extracted. Radiomics feature selection was performed using the analysis of variance and principal component analysis. The selected radiomics features were fed into a support vector machine (SVM) to develop a radiomics model. The clinical and CT characteristics were used to develop a clinical model. Associating non‐enhanced CT radiomics features with clinical factors were used to develop a combined model using SVM. The performance was evaluated using the area under the receiver‐operating characteristic curve (AUC). Results The radiomics model performed well in distinguishing between benign and malignant SPSNs, with an AUC of 0.913 (95% confidence interval [CI], 0.862–0.954) in the training set and an AUC of 0.877 (95% CI, 0.817–0.924) in the testing set. The combined model outperformed the clinical and radiomics models with an AUC of 0.940 (95% CI, 0.906–0.969) in the training set and an AUC of 0.903 (95% CI, 0.857–0.944) in the testing set. Conclusions Radiomics features based on non‐enhanced CT images can be used to differentiate SPSNs. The combined model, which included radiomics and clinical factors, had the best discrimination power between benign and malignant SPSNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜蜜的丹翠完成签到,获得积分10
39秒前
40秒前
46秒前
1分钟前
cclyfan完成签到,获得积分10
1分钟前
1分钟前
陶醉巧凡完成签到,获得积分10
1分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
浮游应助lawang采纳,获得10
2分钟前
iNk应助lawang采纳,获得10
2分钟前
科研通AI2S应助lawang采纳,获得10
2分钟前
Akim应助lawang采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
饺子猫完成签到,获得积分10
3分钟前
3分钟前
lawang完成签到,获得积分10
4分钟前
两个榴莲完成签到,获得积分0
4分钟前
4分钟前
5分钟前
朱文韬发布了新的文献求助10
5分钟前
朱文韬完成签到,获得积分10
5分钟前
平淡卿完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
li发布了新的文献求助10
6分钟前
kasumi完成签到 ,获得积分20
6分钟前
li完成签到,获得积分10
6分钟前
krajicek完成签到,获得积分10
6分钟前
7分钟前
7分钟前
bkagyin应助当里个当采纳,获得10
8分钟前
jinger完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117