Trend and Co-occurrence Network of COVID-19 Symptoms From Large-Scale Social Media Data: Infoveillance Study

2019年冠状病毒病(COVID-19) 无症状的 社会化媒体 比例(比率) 医学 皮尔逊积矩相关系数 相关性 大流行 人口学 心理学 内科学 统计 计算机科学 疾病 地图学 地理 几何学 数学 社会学 万维网 传染病(医学专业)
作者
Jiageng Wu,Lumin Wang,Yining Hua,Minghui Li,Li Zhou,David W. Bates,Jie Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:25: e45419-e45419 被引量:15
标识
DOI:10.2196/45419
摘要

For an emergent pandemic, such as COVID-19, the statistics of symptoms based on hospital data may be biased or delayed due to the high proportion of asymptomatic or mild-symptom infections that are not recorded in hospitals. Meanwhile, the difficulty in accessing large-scale clinical data also limits many researchers from conducting timely research.Given the wide coverage and promptness of social media, this study aimed to present an efficient workflow to track and visualize the dynamic characteristics and co-occurrence of symptoms for the COVID-19 pandemic from large-scale and long-term social media data.This retrospective study included 471,553,966 COVID-19-related tweets from February 1, 2020, to April 30, 2022. We curated a hierarchical symptom lexicon for social media containing 10 affected organs/systems, 257 symptoms, and 1808 synonyms. The dynamic characteristics of COVID-19 symptoms over time were analyzed from the perspectives of weekly new cases, overall distribution, and temporal prevalence of reported symptoms. The symptom evolutions between virus strains (Delta and Omicron) were investigated by comparing the symptom prevalence during their dominant periods. A co-occurrence symptom network was developed and visualized to investigate inner relationships among symptoms and affected body systems.This study identified 201 COVID-19 symptoms and grouped them into 10 affected body systems. There was a significant correlation between the weekly quantity of self-reported symptoms and new COVID-19 infections (Pearson correlation coefficient=0.8528; P<.001). We also observed a 1-week leading trend (Pearson correlation coefficient=0.8802; P<.001) between them. The frequency of symptoms showed dynamic changes as the pandemic progressed, from typical respiratory symptoms in the early stage to more musculoskeletal and nervous symptoms in the later stages. We identified the difference in symptoms between the Delta and Omicron periods. There were fewer severe symptoms (coma and dyspnea), more flu-like symptoms (throat pain and nasal congestion), and fewer typical COVID symptoms (anosmia and taste altered) in the Omicron period than in the Delta period (all P<.001). Network analysis revealed co-occurrences among symptoms and systems corresponding to specific disease progressions, including palpitations (cardiovascular) and dyspnea (respiratory), and alopecia (musculoskeletal) and impotence (reproductive).This study identified more and milder COVID-19 symptoms than clinical research and characterized the dynamic symptom evolution based on 400 million tweets over 27 months. The symptom network revealed potential comorbidity risk and prognostic disease progression. These findings demonstrate that the cooperation of social media and a well-designed workflow can depict a holistic picture of pandemic symptoms to complement clinical studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SZH应助科研通管家采纳,获得10
刚刚
jinxixi应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
ephore应助科研通管家采纳,获得30
刚刚
科目三应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
orixero应助ziyiziyi采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
小杜发布了新的文献求助50
2秒前
3秒前
chenxin发布了新的文献求助10
3秒前
雅山等等完成签到,获得积分10
5秒前
Pixie发布了新的文献求助10
5秒前
6秒前
思辰。完成签到,获得积分10
6秒前
7秒前
伶俐绮发布了新的文献求助10
8秒前
10秒前
椰子发布了新的文献求助10
11秒前
屈绮兰应助锋feng采纳,获得30
11秒前
11秒前
12秒前
chen应助捉一只小鱼采纳,获得20
13秒前
13秒前
EtanJ完成签到,获得积分10
14秒前
小羊佳佳发布了新的文献求助10
14秒前
乔心发布了新的文献求助10
15秒前
安白发布了新的文献求助10
17秒前
water应助lune采纳,获得10
19秒前
19秒前
19秒前
我是老大应助乔心采纳,获得10
20秒前
可爱的函函应助Pixie采纳,获得10
20秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913411
求助须知:如何正确求助?哪些是违规求助? 3458547
关于积分的说明 10901895
捐赠科研通 3185118
什么是DOI,文献DOI怎么找? 1760636
邀请新用户注册赠送积分活动 851740
科研通“疑难数据库(出版商)”最低求助积分说明 792853