Emerging Technologies and Algorithms for Periodontal Screening and Risk of Disease Progression in Non‐Dental Settings: A Scoping Review

牙周炎 医学 牙龈炎 背景(考古学) 系统回顾 人口 疾病 梅德林 风险评估 算法 指南 金标准(测试) 牙科 计算机科学 病理 内科学 环境卫生 政治学 法学 古生物学 计算机安全 生物
作者
Eduardo Montero,Nerea Sánchez,Ignacio Sanz‐Sánchez,Mercedes López,A. Carrillo de Albornoz,Thomas Dietrich
出处
期刊:Journal of Clinical Periodontology [Wiley]
被引量:1
标识
DOI:10.1111/jcpe.14168
摘要

ABSTRACT Aim To evaluate different tools to screen for periodontal diseases and/or evaluate the risk for disease progression in non‐dental clinical settings. Materials and Methods The PRISMA Extension for Scoping Reviews (PRISMA‐ScR) guideline was followed. A systematic search was conducted on three databases. In order to provide a comprehensive picture of periodontal diseases (Population) screening and risk assessment tools (Concept) in non‐dental settings (Context), the available information was identified and presented in terms of the sources of data/domains assessed and, eventually, how the tools/algorithms were validated. The risk of bias was assessed using the QUADAS‐2 tool. Results A total of 5313 articles were identified for abstract screening. Finally, 102 were included for data synthesis. The included studies were classified into domains/clusters. Only two studies focused on risk assessment for disease progression. Algorithms designed to screen for gingivitis tended to present low sensitivity values, while the screening performance improved for periodontitis, particularly for severe periodontitis. Validated self‐reported questionnaires plus socio‐demographic determinants (e.g., age), certain biomarkers in saliva (e.g., activated matrix metalloproteinase‐8, aMMP‐8) and artificial intelligence (AI) algorithms based on orthopantomographs (OPGs) present the best screening capacity for periodontitis. Conclusions Screening for periodontitis in non‐dental settings is feasible. Validated self‐reported questionnaires remain the gold standard for screening severe periodontitis in non‐dental settings, although AI algorithms based on biomarkers in saliva, or derived from OPGs, have shown promising results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cheng发布了新的文献求助10
1秒前
落花神完成签到,获得积分10
1秒前
英俊的铭应助专一的蛋挞采纳,获得10
2秒前
yyds发布了新的文献求助10
2秒前
星星完成签到,获得积分10
2秒前
开放思远完成签到,获得积分10
2秒前
Certainty橙子完成签到,获得积分10
3秒前
超帅寄真完成签到,获得积分20
3秒前
可爱的函函应助黄黄黄采纳,获得10
3秒前
4秒前
小白白发布了新的文献求助30
4秒前
美满的外套完成签到,获得积分20
5秒前
6秒前
叶子发布了新的文献求助10
8秒前
STEAD完成签到,获得积分10
8秒前
学术大佬阿呆完成签到 ,获得积分10
8秒前
老实验人完成签到,获得积分10
8秒前
10秒前
科研通AI6应助ruru采纳,获得30
11秒前
利利发布了新的文献求助10
12秒前
Ian完成签到,获得积分10
12秒前
12秒前
LJR完成签到,获得积分10
12秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
ontheway发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
万物生完成签到,获得积分10
17秒前
zhsy发布了新的文献求助10
18秒前
lightman完成签到,获得积分10
18秒前
wywy发布了新的文献求助10
20秒前
20秒前
20秒前
波特卡斯D艾斯完成签到 ,获得积分10
20秒前
胡明轩完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643881
求助须知:如何正确求助?哪些是违规求助? 4762227
关于积分的说明 15022609
捐赠科研通 4802076
什么是DOI,文献DOI怎么找? 2567320
邀请新用户注册赠送积分活动 1525012
关于科研通互助平台的介绍 1484514