作者
Dayana Lizeth Sánchez Pinzón,Daniela Lourenço,Tiago Albertini Balbino,Thenner S. Rodrigues
摘要
This review summarizes recent advances in photoactive nanomaterials containing metals and their biomedical applications, particularly in cancer diagnosis and therapy. Conventional approaches such as chemotherapy and radiotherapy suffer from low specificity, systemic toxicity, and resistance, while light-based therapies, including photothermal therapy (PTT) and photodynamic therapy (PDT), offer minimally invasive and localized alternatives. Metal nanomaterials, especially gold and silver, exhibit unique localized surface plasmon resonance (LSPR) effects that enable efficient light-to-heat or light-to-reactive oxygen conversion, supporting precise tumor ablation, drug delivery, and imaging. We discuss strategies for structural design, surface functionalization, and encapsulation to enhance stability, targeting, and therapeutic efficiency. Emerging hybrid systems, such as carbon-based nanostructures and metal–organic frameworks, are also considered for their complementary properties. Computational modeling tools, including finite element and discrete dipole approximations, are highlighted for predicting nanomaterial performance and guiding rational design. Finally, we critically assess challenges such as toxicity, long-term biocompatibility, and clinical translation, and provide perspectives for future development. By integrating materials design, simulation, and preclinical findings, this review aims to inform the advancement of safer and more effective nanotechnology-based platforms for personalized cancer treatment and diagnosis.