Individual tree detection and segmentation from unmanned aerial vehicle-LiDAR data based on a trunk point distribution indicator

下层林 激光雷达 分割 遥感 后备箱 人工智能 植被(病理学) 树(集合论) 计算机科学 天蓬 点云 牙冠(牙科) 地理 数学 数学分析 生态学 病理 生物 考古 牙科 医学
作者
Susu Deng,Qi Xu,Yuanzheng Yue,Sishuo Jing,Yixiang Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108717-108717 被引量:13
标识
DOI:10.1016/j.compag.2024.108717
摘要

The light detection and ranging (LiDAR) systems mounted on unmanned aerial vehicle (UAV) platforms can provide high-density point cloud data for accurate individual tree detection and segmentation, which is needed for precision forestry. Individual trees can be detected and segmented based on tree trunk detection. It is a challenging task in forests characterized by high understory vegetation and varying point densities of trunks caused by obstruction from the upper canopy. We propose an approach to detect tree trunks and segment individual trees from UAV-LiDAR data. First, a trunk point distribution indicator (TPDI) was used to detect potential tree trunk positions (PTPs). Then random sample consistency (RANSAC)-based 3D line fitting was applied to each PTP to differentiate tree trunks from understory vegetation. Finally, a trunk-based region-growing segmentation method was applied to segment individual trees, and the result was refined through analysis of crown shape and vertical profiles. The approach was tested at three study sites in Eucalyptus plantations, which were characterized by overlapping crowns and relatively high understory vegetation. F-scores ranging from 0.920 to 1.000 were derived in 12 plots, and the accuracies increased with the tree heights. The comparative shortest-path algorithm for tree trunk detection and segmentation was applied for comparison and derived much lower F-scores (0.526–0.867). The proposed approach was also evaluated by replacing TPDI with a similar indicator. The comparison result indicated that the proposed approach was especially advantageous in forests characterized by relatively low tree heights and high understory vegetation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容访旋发布了新的文献求助10
1秒前
2秒前
独特安阳完成签到,获得积分10
2秒前
万能图书馆应助graffiti采纳,获得10
3秒前
赘婿应助歪果仁195采纳,获得10
3秒前
4秒前
4秒前
来了发布了新的文献求助10
4秒前
5秒前
无花果应助娜乌西卡采纳,获得10
6秒前
香蕉觅云应助神勇从波采纳,获得10
7秒前
vikoel发布了新的文献求助30
7秒前
7秒前
科目三应助waterimagic2采纳,获得10
9秒前
lalala发布了新的文献求助10
10秒前
wxr发布了新的文献求助10
11秒前
15秒前
蓝天白云发布了新的文献求助10
17秒前
weijiechi完成签到,获得积分10
18秒前
娜乌西卡发布了新的文献求助10
21秒前
小名余土土完成签到 ,获得积分10
22秒前
31秒前
33秒前
37秒前
lxc发布了新的文献求助30
37秒前
136542发布了新的文献求助10
38秒前
bobo发布了新的文献求助20
38秒前
简.....完成签到,获得积分10
41秒前
阿水发布了新的文献求助10
42秒前
大模型应助Lee2000采纳,获得10
45秒前
希望天下0贩的0应助简.....采纳,获得10
47秒前
852应助默默安双采纳,获得10
47秒前
maofeng完成签到,获得积分10
48秒前
薛蹇完成签到 ,获得积分10
48秒前
49秒前
49秒前
lxc关闭了lxc文献求助
50秒前
52秒前
小种子发布了新的文献求助30
55秒前
bkagyin应助Gumiano采纳,获得10
56秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942475
求助须知:如何正确求助?哪些是违规求助? 3487798
关于积分的说明 11045085
捐赠科研通 3218168
什么是DOI,文献DOI怎么找? 1778791
邀请新用户注册赠送积分活动 864428
科研通“疑难数据库(出版商)”最低求助积分说明 799438