Recent Progress and Challenges in Perylene Small Molecules, Assemblies and Composites for Photocatalytic Hydrogen Evolution

二亚胺 光催化 材料科学 背景(考古学) 分子 催化作用 纳米结构 纳米技术 光化学 化学 有机化学 生物 古生物学
作者
Anita Kumari,Sanchita Sengupta
出处
期刊:Chemcatchem [Wiley]
卷期号:16 (2) 被引量:5
标识
DOI:10.1002/cctc.202301033
摘要

Abstract Perylene diimide (PDI) derivatives are among the best‐known n‐type organic semiconductors because of their unique photophysical and chemical characteristics. In recent years, significant progress has been made in the development of various PDI/composites and their self‐assembled structures for photocatalytic hydrogen (H 2 ) evolution. However, the slow transport of photogenerated charge carriers, rapid charge recombination, limited catalytic activity, and instability of these materials still pose difficulties for their practical use. In order to address these problems, extensive studies have been conducted on structural modifications, molecular design, and synthesis techniques to control the morphology of self‐assembled PDI structures and create new and effective photocatalysts. In this context, perylene based small molecules, their composites with TiO 2 and g ‐C 3 N 4 , self‐assembled perylene derivatives have been designed and their roles as heterogenous photocatalysts for H 2 evolution have been investigated thoroughly in literature. In this review, the developments of PDI‐based photocatalysts for H 2 evolution are outlined under four different categories. Self‐assembled PDI nanostructures have made the most advancements among all the categories, with highest hydrogen evolution rate (HER) of 61.49 mmol g −1 h −1 while composites composed of perylene derivatives and g ‐C 3 N 4 exhibited the second highest rate of hydrogen evolution (17.7 mmol g −1 h −1 ). This review is intended to give researchers a better understanding and guidelines for designing PDI‐based and other chromophore‐based materials for efficient H 2 evolution and their further exploration for future improvement in H 2 evolution efficiencies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子发布了新的文献求助20
1秒前
1秒前
1秒前
1秒前
晒太阳啦完成签到,获得积分10
1秒前
Rae发布了新的文献求助10
3秒前
4秒前
核桃发布了新的文献求助10
4秒前
从容的元槐完成签到,获得积分10
5秒前
微笑笑萍发布了新的文献求助30
6秒前
麦种发布了新的文献求助100
6秒前
牛马一生发布了新的文献求助10
8秒前
8秒前
ZZzz发布了新的文献求助10
9秒前
万能图书馆应助李小胖采纳,获得10
13秒前
Joy应助牛马一生采纳,获得10
14秒前
哈里发发布了新的文献求助10
14秒前
ll完成签到,获得积分10
15秒前
赘婿应助mll采纳,获得10
16秒前
17秒前
18秒前
搞怪的婴发布了新的文献求助10
18秒前
健壮诗兰发布了新的文献求助10
18秒前
foxp3完成签到,获得积分10
19秒前
dickzyz发布了新的文献求助10
21秒前
21秒前
哈里发完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
瀼瀼发布了新的文献求助10
24秒前
25秒前
26秒前
圆圆发布了新的文献求助10
26秒前
落后乘风完成签到 ,获得积分10
26秒前
27秒前
skr完成签到,获得积分10
27秒前
科研通AI6应助LYY采纳,获得30
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
27秒前
上官若男应助科研通管家采纳,获得10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240348
求助须知:如何正确求助?哪些是违规求助? 3774134
关于积分的说明 11852146
捐赠科研通 3429464
什么是DOI,文献DOI怎么找? 1882300
邀请新用户注册赠送积分活动 934174
科研通“疑难数据库(出版商)”最低求助积分说明 840862