GRNet: Geometry Restoration for G-PCC Compressed Point Clouds Using Auxiliary Density Signaling

点云 计算机科学 点(几何) 计算机图形学(图像) 几何学 计算机视觉 数学
作者
Gexin Liu,Ruixiang Xue,Jiaxin Li,Dandan Ding,Zhan Ma
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:30 (10): 6740-6753 被引量:6
标识
DOI:10.1109/tvcg.2023.3336936
摘要

The lossy Geometry-based Point Cloud Compression (G-PCC) inevitably impairs the geometry information of point clouds, which deteriorates the quality of experience (QoE) in reconstruction and/or misleads decisions in tasks such as classification. To tackle it, this work proposes GRNet for the geometry restoration of G-PCC compressed large-scale point clouds. By analyzing the content characteristics of original and G-PCC compressed point clouds, we attribute the G-PCC distortion to two key factors: point vanishing and point displacement. Visible impairments on a point cloud are usually dominated by an individual factor or superimposed by both factors, which are determined by the density of the original point cloud. To this end, we employ two different models for coordinate reconstruction, termed Coordinate Expansion and Coordinate Refinement, to attack the point vanishing and displacement, respectively. In addition, 4-byte auxiliary density information is signaled in the bitstream to assist the selection of Coordinate Expansion, Coordinate Refinement, or their combination. Before being fed into the coordinate reconstruction module, the G-PCC compressed point cloud is first processed by a Feature Analysis Module for multiscale information fusion, in which kNN-based Transformer is leveraged at each scale to adaptively characterize neighborhood geometric dynamics for effective restoration. Following the common test conditions recommended in the MPEG standardization committee, GRNet significantly improves the G-PCC anchor and remarkably outperforms state-of-the-art methods on a great variety of point clouds (e.g., solid, dense, and sparse samples) both quantitatively and qualitatively. Meanwhile, GRNet runs fairly fast and uses a smaller-size model when compared with existing learning-based approaches, making it attractive to industry practitioners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助火星上无春采纳,获得10
1秒前
行周完成签到 ,获得积分10
1秒前
景景好发布了新的文献求助10
2秒前
2秒前
3秒前
烟花应助luosiyi采纳,获得10
6秒前
Dave发布了新的文献求助10
6秒前
7秒前
7秒前
darcy发布了新的文献求助10
7秒前
LL发布了新的文献求助10
9秒前
故意的鼠标完成签到,获得积分10
9秒前
景景好完成签到,获得积分10
10秒前
天玄完成签到,获得积分10
10秒前
13秒前
林洛沁发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
碧蓝幻灵完成签到,获得积分10
14秒前
14秒前
17秒前
小芊完成签到,获得积分10
18秒前
Nikki完成签到,获得积分10
18秒前
王小美发布了新的文献求助10
18秒前
荒1发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
Walter发布了新的文献求助10
20秒前
乐乐应助留胡子的沛儿采纳,获得10
21秒前
在水一方应助灵巧映安采纳,获得10
21秒前
静火雅完成签到,获得积分10
22秒前
小芊发布了新的文献求助10
23秒前
林洛沁完成签到,获得积分10
23秒前
24秒前
现代水卉应助我避他锋芒采纳,获得10
24秒前
25秒前
打打应助waiting采纳,获得10
26秒前
Ava应助darcy采纳,获得10
28秒前
Ukey发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5527078
求助须知:如何正确求助?哪些是违规求助? 4616936
关于积分的说明 14556478
捐赠科研通 4555603
什么是DOI,文献DOI怎么找? 2496392
邀请新用户注册赠送积分活动 1476698
关于科研通互助平台的介绍 1448227