PBFL: A Privacy-Preserving Blockchain-Based Federated Learning Framework With Homomorphic Encryption and Single Masking

计算机科学 同态加密 块链 服务器 加密 信息隐私 遮罩(插图) 计算机安全 数据聚合器 秘密分享 保密 密码学 计算机网络 艺术 无线传感器网络 视觉艺术
作者
Baofu Han,Bing Li,Raja Jurdak,Peiyun Zhang,Hao Zhang,Pan Feng,Chau Yuen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/jiot.2024.3524632
摘要

Federated Learning (FL) has emerged as a promising paradigm for secure data sharing in Industrial Internet of Things (IIoT), enabling collaborative model training without direct exchange of raw data. However, recent studies have shown that FL still suffers from privacy vulnerabilities, where adversaries can reconstruct sensitive information by analyzing shared model parameters. Although several privacy-preserving FL (PPFL) schemes have been proposed to address these challenges, they primarily focus on protecting local model privacy, with limited attention to protecting global model confidentiality during aggregation. Additionally, their reliance on centralized aggregation servers introduces risks of single points of failure. To address these challenges, we propose a novel privacy-preserving blockchain-based FL framework (PBFL) that integrates blockchain, homomorphic encryption (HE), and a single masking. Specifically, PBFL employs HE to enable secure model training within the ciphertext domain, ensuring global model confidentiality. The single masking technique allows clients to apply unique random masks to their encrypted local model updates, enabling secure aggregation while preserving local privacy. Additionally, PBFL leverages blockchain for decentralized aggregation and encrypted model storage, effectively mitigating the risks associated with centralized servers. Experimental results demonstrate that PBFL achieves comparable model accuracy to state-of-the-art solutions while providing enhanced privacy protection. Furthermore, even with a client dropout rate of up to 30%, PBFL outperforms other blockchain-based PPFL methods in terms of computational and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
deng203完成签到,获得积分20
1秒前
正直的冰棍完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
4秒前
4秒前
冰魂应助无私的谷槐采纳,获得30
4秒前
5秒前
5秒前
5秒前
6秒前
武雨寒发布了新的文献求助10
6秒前
8秒前
华仔应助wwb采纳,获得10
8秒前
畅快箴发布了新的文献求助30
8秒前
8秒前
小肆发布了新的文献求助10
9秒前
和和发布了新的文献求助10
9秒前
9秒前
辛勤的谷冬完成签到,获得积分10
10秒前
10秒前
qzd发布了新的文献求助10
11秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
一一应助科研通管家采纳,获得10
12秒前
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
13秒前
一一应助科研通管家采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870808
求助须知:如何正确求助?哪些是违规求助? 3412914
关于积分的说明 10681953
捐赠科研通 3137368
什么是DOI,文献DOI怎么找? 1730902
邀请新用户注册赠送积分活动 834444
科研通“疑难数据库(出版商)”最低求助积分说明 781172