Estimating Information Theoretic Measures via Multidimensional Gaussianization

计算机科学 人工智能 数据挖掘 模式识别(心理学)
作者
Valero Laparra,J. Emmanuel Johnson,Gustau Camps‐Valls,Raúl Santos‐Rodríguez,Jesús Malo
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-16
标识
DOI:10.1109/tpami.2024.3495827
摘要

Information theory is an outstanding framework for measuring uncertainty, dependence, and relevance in data and systems. It has several desirable properties for real-world applications: naturally deals with multivariate data, can handle heterogeneous data, and the measures can be interpreted. However, it has not been adopted by a wider audience because obtaining information from multidimensional data is a challenging problem due to the curse of dimensionality. We propose an indirect way of estimating information based on a multivariate iterative Gaussianization transform. The proposed method has a multivariate-to-univariate property: it reduces the challenging estimation of multivariate measures to a composition of marginal operations applied in each iteration of the Gaussianization. Therefore, the convergence of the resulting estimates depends on the convergence of well-understood univariate entropy estimates, and the global error linearly depends on the number of times the marginal estimator is invoked. We introduce Gaussianization-based estimates for Total Correlation, Entropy, Mutual Information, and Kullback-Leibler Divergence. Results on artificial data show that our approach is superior to previous estimators, particularly in high-dimensional scenarios. We also illustrate the method's performance in different fields to obtain interesting insights. We make the tools and datasets publicly available to provide a test bed for analyzing future methodologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
eri发布了新的文献求助10
1秒前
科研通AI6应助刻苦的雨莲采纳,获得30
2秒前
liberty完成签到,获得积分10
2秒前
2秒前
2秒前
Ferry发布了新的文献求助10
3秒前
陈少康完成签到,获得积分10
4秒前
dongzh完成签到 ,获得积分10
4秒前
shea发布了新的文献求助10
5秒前
5秒前
可爱的函函应助美美桑内采纳,获得10
5秒前
xxx完成签到,获得积分10
5秒前
6秒前
Lucas应助小象梦想飞糖采纳,获得10
6秒前
JamesR完成签到,获得积分10
6秒前
6秒前
idemipere完成签到,获得积分10
7秒前
7秒前
哒哒哒发布了新的文献求助10
7秒前
任浩发布了新的文献求助10
7秒前
psy完成签到,获得积分10
7秒前
7秒前
你眼带笑完成签到 ,获得积分10
8秒前
xxx发布了新的文献求助30
8秒前
8秒前
Owen应助哈吉小猪采纳,获得10
9秒前
ONE完成签到,获得积分10
9秒前
谢亚飞发布了新的文献求助10
10秒前
廖怡星完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
ming完成签到 ,获得积分10
12秒前
香蕉觅云应助xiaoyue采纳,获得10
14秒前
Lucas应助dreamy4869采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4840426
求助须知:如何正确求助?哪些是违规求助? 4142640
关于积分的说明 12825309
捐赠科研通 3887778
什么是DOI,文献DOI怎么找? 2137447
邀请新用户注册赠送积分活动 1157497
关于科研通互助平台的介绍 1057257