氧化物
硫化物
降级(电信)
电解质
材料科学
金属
化学工程
无机化学
化学
冶金
电极
计算机科学
电信
工程类
物理化学
作者
Taewoo Kim,Zachary D. Hood,Aditya Sundar,Anil U. Mane,Francisco Lagunas,Khagesh Kumar,Neelam Sunariwal,Jordi Cabana,Sanja Tepavcevic,Jeffrey W. Elam,Peter Zapol,Justin G. Connell
标识
DOI:10.1021/acsmaterialslett.4c01923
摘要
Sulfide-based solid-state electrolytes (SSEs) are promising materials with superior Li-ion conductivity; however, their poor atmospheric stability limits commercial manufacturing at scale. Here, we investigate the impact of ultrathin metal oxide layers deposited via atomic layer deposition (ALD) on the stability of Li6PS5Cl (LPSCl). Al2O3 layers grown directly on LPSCl particles significantly stabilize the surface chemistry and Li-ion transport properties relative to uncoated material upon exposure to both an ambient atmosphere (22% relative humidity, RH) and humidified O2 (100% RH). Detailed investigations indicate that coatings impede the surface and bulk degradation kinetics of exposed materials, even for coatings as thin as ∼1 Å. This suggests that stabilization is due to more than just a physical barrier. Shifts in valence band edge positions of coated LPSCl indicate that ALD coatings alter the surface electronic structure and resulting oxidation tendency of underlying LPSCl, suggesting new avenues to improving the environmental stability of sulfide SSEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI