Liver tumor segmentation method combining multi-axis attention and conditional generative adversarial networks

分割 计算机科学 人工智能 鉴别器 模式识别(心理学) 发电机(电路理论) 特征(语言学) 人工神经网络 图像分割 探测器 量子力学 功率(物理) 物理 电信 哲学 语言学
作者
Jiahao Liao,Hongyuan Wang,Hanjie Gu,Yinghui Cai
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0312105-e0312105 被引量:2
标识
DOI:10.1371/journal.pone.0312105
摘要

In modern medical imaging-assisted therapies, manual annotation is commonly employed for liver and tumor segmentation in abdominal CT images. However, this approach suffers from low efficiency and poor accuracy. With the development of deep learning, automatic liver tumor segmentation algorithms based on neural networks have emerged, for the improvement of the work efficiency. However, existing liver tumor segmentation algorithms still have several limitations: (1) they often encounter the common issue of class imbalance in liver tumor segmentation tasks, where the tumor region is significantly smaller than the normal tissue region, causing models to predict more negative samples and neglect the tumor region; (2) they fail to adequately consider feature fusion between global contexts, leading to the loss of crucial information; (3) they exhibit weak perception of local details such as fuzzy boundaries, irregular shapes, and small lesions, thereby failing to capture important features. To address these issues, we propose a Multi-Axis Attention Conditional Generative Adversarial Network, referred to as MA-cGAN. Firstly, we propose the Multi-Axis attention mechanism (MA) that projects three-dimensional CT images along different axes to extract two-dimensional features. The features from different axes are then fused by using learnable factors to capture key information from different directions. Secondly, the MA is incorporated into a U-shaped segmentation network as the generator to enhance its ability to extract detailed features. Thirdly, a conditional generative adversarial network is built by combining a discriminator and a generator to enhance the stability and accuracy of the generator’s segmentation results. The MA-cGAN was trained and tested on the LiTS public dataset for the liver and tumor segmentation challenge. Experimental results show that MA-cGAN improves the Dice coefficient, Hausdorff distance, average surface distance, and other metrics compared to the state-of-the-art segmentation models. The segmented liver and tumor models have clear edges, fewer false positive regions, and are closer to the true labels, which plays an active role in medical adjuvant therapy. The source code with our proposed model are available at https : //github . com/jhliao0525/MA-cGAN . git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详砖家完成签到,获得积分10
3秒前
浮游应助梅天豪采纳,获得10
3秒前
cabbage完成签到,获得积分10
3秒前
MrIShelter发布了新的文献求助10
4秒前
cappuccino完成签到 ,获得积分10
4秒前
小灰灰完成签到,获得积分10
4秒前
酷炫的__完成签到,获得积分10
4秒前
木木完成签到,获得积分10
5秒前
Lidanni完成签到 ,获得积分10
7秒前
Hola发布了新的文献求助10
8秒前
huhdcid发布了新的文献求助10
9秒前
mzk关注了科研通微信公众号
10秒前
华仔应助嘻嘻采纳,获得10
12秒前
姚芭蕉完成签到 ,获得积分0
12秒前
华仔应助zxt采纳,获得10
13秒前
哈基米德应助kyouu采纳,获得20
13秒前
YY完成签到 ,获得积分10
13秒前
云泥完成签到 ,获得积分10
14秒前
打打应助纯真凌晴采纳,获得10
14秒前
16秒前
17秒前
脆脆鲨完成签到 ,获得积分10
18秒前
整齐芷文完成签到,获得积分10
18秒前
HHHHH完成签到,获得积分10
19秒前
22秒前
SciGPT应助ZZZ采纳,获得10
22秒前
jignjing完成签到,获得积分10
23秒前
菲噗噗发布了新的文献求助10
23秒前
24秒前
24秒前
26秒前
SilverGhost发布了新的文献求助10
28秒前
哈哈完成签到,获得积分10
32秒前
32秒前
蒋好完成签到,获得积分10
33秒前
33秒前
Steven完成签到,获得积分10
33秒前
永毅完成签到 ,获得积分10
34秒前
34秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339044
求助须知:如何正确求助?哪些是违规求助? 4475985
关于积分的说明 13930102
捐赠科研通 4371418
什么是DOI,文献DOI怎么找? 2401804
邀请新用户注册赠送积分活动 1394843
关于科研通互助平台的介绍 1366677