Detection of three-rooted mandibular first molars on panoramic radiographs using deep learning

接收机工作特性 射线照相术 金标准(测试) 曲线下面积 锥束ct 卷积神经网络 医学 臼齿 诊断准确性 核医学 预测值 人工智能 曲线下面积 口腔正畸科 牙科 放射科 计算机科学 计算机断层摄影术 内科学 药代动力学
作者
Jin Long,Ying Tang,Wenyuan Zhou,Bingbing Bai,Ziqiang Yu,Panpan Zhang,Yongchun Gu
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-82378-8
摘要

Abstract This study aimed to develop a deep learning system for the detection of three-rooted mandibular first molars (MFMs) on panoramic radiographs and to assess its diagnostic performance. Panoramic radiographs, together with cone beam computed tomographic (CBCT) images of the same subjects, were retrospectively collected from 730 patients, encompassing a total of 1444 MFMs (367 teeth were three-rooted and the remaining 1077 teeth were two-rooted). Five convolutional neural network (CNN) models (ResNet-101 and − 50, DenseNet-201, MobileNet-v3 and Inception-v3) were employed to classify three- and two-rooted MFMs on the panoramic radiographs. The diagnostic performance of each model was evaluated using standard metrics, including accuracy, sensitivity, specificity, precision, negative predictive value, and F1 score. Receiver operating characteristic (ROC) curve analyses were performed, with the CBCT examination taken as the gold standard. Among the five CNN models evaluated, ResNet-101 demonstrated superior diagnostic performance, and the AUC value attained was 0.907, significantly higher than that of all other models (all P < 0.01). The accuracy, sensitivity, and specificity were 87.5%, 83.6%, and 88.9%, respectively. DenseNet-201, however, showed the lowest diagnostic performance among the five models (all P < 0.01), with an AUC value of 0.701 and an accuracy of 73.2%. Overall, the performance of the CNNs diminished when using image patches containing only the distal half of MFMs, with AUC values ranging between 0.680 and 0.800. In contrast, the diagnostic performance of the two clinicians was poorer, with AUC values of only 0.680 and 0.632, respectively. In conclusion, the CNN-based deep learning system exhibited a high level of accuracy in the detection of three-rooted MFMs on panoramic radiographs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
刚刚
TT完成签到,获得积分10
1秒前
晓军发布了新的文献求助10
1秒前
欣慰枕头发布了新的文献求助10
1秒前
2秒前
chor完成签到,获得积分10
2秒前
小肥吴完成签到,获得积分10
2秒前
ding应助chenhui采纳,获得30
2秒前
慕青应助好好采纳,获得10
3秒前
4秒前
dyfsj发布了新的文献求助10
5秒前
心信鑫完成签到 ,获得积分10
5秒前
不吃糖发布了新的文献求助10
5秒前
5秒前
zrw发布了新的文献求助10
8秒前
8秒前
一只小蜗牛完成签到,获得积分10
9秒前
科研01应助竹木生花采纳,获得10
10秒前
11秒前
111完成签到,获得积分10
11秒前
SciGPT应助大仙儿采纳,获得10
12秒前
shendu发布了新的文献求助10
12秒前
13秒前
dhdafwet完成签到,获得积分10
14秒前
謓言发布了新的文献求助10
15秒前
16秒前
16秒前
wenti完成签到,获得积分20
16秒前
16秒前
17秒前
bkagyin应助huenan采纳,获得10
17秒前
是多少完成签到,获得积分10
18秒前
丘比特应助可乐加冰采纳,获得10
19秒前
善良的火完成签到 ,获得积分10
19秒前
Lucas应助大佛老爷采纳,获得10
19秒前
20秒前
Accept应助桃乐茜采纳,获得10
20秒前
20秒前
20秒前
21秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831449
求助须知:如何正确求助?哪些是违规求助? 3373606
关于积分的说明 10480718
捐赠科研通 3093621
什么是DOI,文献DOI怎么找? 1702772
邀请新用户注册赠送积分活动 819189
科研通“疑难数据库(出版商)”最低求助积分说明 771284