Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning

强化学习 任务(项目管理) 机器人 计算机科学 钢筋 人工智能 工程类 结构工程 系统工程
作者
Feng Xie,Zhengwei Guo,Tao Li,Qingchun Feng,Chunjiang Zhao
出处
期刊:Horticulturae [Multidisciplinary Digital Publishing Institute]
卷期号:11 (1): 88-88
标识
DOI:10.3390/horticulturae11010088
摘要

Global fruit production costs are increasing amid intensified labor shortages, driving heightened interest in robotic harvesting technologies. Although multi-arm coordination in harvesting robots is considered a highly promising solution to this issue, it introduces technical challenges in achieving effective coordination. These challenges include mutual interference among multi-arm mechanical structures, task allocation across multiple arms, and dynamic operating conditions. This imposes higher demands on task coordination for multi-arm harvesting robots, requiring collision-free collaboration, optimization of task sequences, and dynamic re-planning. In this work, we propose a framework that models the task planning problem of multi-arm operation as a Markov game. First, considering multi-arm cooperative movement and picking sequence optimization, we employ a two-agent Markov game framework to model the multi-arm harvesting robot task planning problem. Second, we introduce a self-attention mechanism and a centralized training and execution strategy in the design and training of our deep reinforcement learning (DRL) model, thereby enhancing the model’s adaptability in dynamic and uncertain environments and improving decision accuracy. Finally, we conduct extensive numerical simulations in static environments; when the harvesting targets are set to 25 and 50, the execution time is reduced by 10.7% and 3.1%, respectively, compared to traditional methods. Additionally, in dynamic environments, both operational efficiency and robustness are superior to traditional approaches. The results underscore the potential of our approach to revolutionize multi-arm harvesting robotics by providing a more adaptive and efficient task planning solution. We will research improving the positioning accuracy of fruits in the future, which will make it possible to apply this framework to real robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小何HUHU发布了新的文献求助10
3秒前
好久不见发布了新的文献求助10
3秒前
4秒前
SCUTer完成签到,获得积分10
4秒前
6秒前
玥越完成签到 ,获得积分10
6秒前
liugm发布了新的文献求助10
8秒前
yututu发布了新的文献求助10
8秒前
上官若男应助ruan采纳,获得10
9秒前
SSS发布了新的文献求助10
10秒前
12秒前
18秒前
乔威完成签到,获得积分10
18秒前
永远明媚发布了新的文献求助10
19秒前
19秒前
mayucong完成签到,获得积分10
20秒前
yututu完成签到,获得积分10
23秒前
小邱完成签到 ,获得积分10
24秒前
koko发布了新的文献求助10
24秒前
小果子完成签到 ,获得积分10
27秒前
27秒前
跑快点发布了新的文献求助20
27秒前
华仔应助XP采纳,获得10
28秒前
科研通AI5应助koko采纳,获得10
29秒前
咿咿呀呀完成签到,获得积分10
30秒前
圆子完成签到,获得积分20
30秒前
33秒前
英俊的铭应助科研通管家采纳,获得10
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
领导范儿应助科研通管家采纳,获得10
33秒前
FashionBoy应助科研通管家采纳,获得10
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
33秒前
阿梅梅梅完成签到,获得积分20
34秒前
bamboo完成签到,获得积分20
36秒前
XP完成签到,获得积分10
37秒前
所所应助贾舒涵采纳,获得10
37秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Asian badgers—the same, only different: how diversity among badger societies informs socio-ecological theory and challenges conservation 500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787836
求助须知:如何正确求助?哪些是违规求助? 3333486
关于积分的说明 10261926
捐赠科研通 3049234
什么是DOI,文献DOI怎么找? 1673459
邀请新用户注册赠送积分活动 801949
科研通“疑难数据库(出版商)”最低求助积分说明 760428