医学
疾病
Pet成像
生物标志物
肿瘤科
正电子发射断层摄影术
病理
内科学
重症监护医学
放射科
生物化学
化学
作者
Viktoriia Zarovniaeva,Summayya Anwar,Shahwar Kazmi,Kimberly Perez,S. S. Sandhu,Lubna Mohammed
出处
期刊:Cureus
[Cureus, Inc.]
日期:2025-01-21
摘要
Alzheimer's disease (AD) is a chronic neurologic disease characterized by the deposition of Aβ amyloid and tau protein in the neural tissue, which leads to gradual and irreversible deterioration of memory. Positron emission tomography (PET) showed high potential in diagnosing AD. It provided a unique opportunity to assess cerebral amyloid plaques and tau neurofibrillary tangle deposits in the brain tissue without invasive procedures in vivo. Many studies have been focused on PET diagnosis of AD in recent years, which has significantly improved diagnosis and treatment strategies. This review study aims to summarize the role and emphasize the benefits of PET detection of AD biomarkers in early stages, clinical and histological progression assessment, and predicting AD outcomes. Relevant articles published in the last five years, from September 1, 2019, to October 30, 2024, were searched through authentic databases such as PubMed, PubMed Central, Europe PubMed Central, Science Direct, Cochrane Library, and Google Scholar. In this systematic review, we included articles published in English, with available full text, based on human trials, with relevant information regarding participants who underwent PET of the brain to diagnose AD biomarkers. The study strictly followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines and recommendations. The Joanna Briggs Institute (JBI) critical appraisal methods were used to evaluate all selected cross-sectional research, and the Newcastle-Ottawa Scale (NOS) was used to assess the cohort and longitudinal studies. Eleven relevant articles were included in this systematic review, and 2,203 males and females participated. The study revealed that the detection of beta-amyloid PET showed high-precious results in early diagnosis of AD. The detection of tau protein showed a high potential for estimation of the clinical and histological progression and prognosis of AD in longitudinal studies. Identifying amyloid and tau protein accumulation and glucose metabolism alterations is highly predictive of neurodegeneration in preclinical and mild cognitive impairment stages.
科研通智能强力驱动
Strongly Powered by AbleSci AI