Bayesian efficient safety monitoring: a simple and well-performing framework to continuous safety monitoring of adverse events in randomized clinical trials

贝叶斯概率 简单(哲学) 安全监测 计算机科学 随机对照试验 临床试验 不利影响 统计 医学 数据挖掘 计量经济学 数学 内科学 生物信息学 生物 认识论 哲学
作者
Liangcai Zhang,Ming Chen,Vladimir Dragalin,Bin Jia,Cunyi Wang,Leixin Xia,Chaohui Yuan,Fei Chen
出处
期刊:Journal of Biopharmaceutical Statistics [Taylor & Francis]
卷期号:: 1-12
标识
DOI:10.1080/10543406.2025.2456176
摘要

During randomized controlled trials, it is critical to remain vigilant in safety monitoring. A common approach is to present information over time, such as frequency tables and graphs, when analyzing adverse events. Nevertheless, there is still a need for developing statistical methods for analyzing safety data of a dynamic nature. The process is typically challenging due to small sample sizes, a lack of observational data sources, difficulties in false-positive control, and the necessity for early detection of serious adverse events. In this article, we propose a simple and effective framework called Bayesian Efficient sAfety Monitoring (BEAM) to analyze evidence aggregation of potentially serious adverse events that may arise during the trial, as well as a timeline for when concrete evidence for safety concerns of unlikely outcomes becomes available. BEAM can be easily tabulated and visualized before the trial starts, making evaluations transparent and easy to use in practice, while maintaining flexibility when the underlying adverse event rate varies. Simulation studies have shown that BEAM supports continuous monitoring, can incorporate external information, and demonstrates good operating characteristics across various scenarios. In most practical situations, it has a reasonable likelihood of detecting elevated risks and identifying safety signals early on when safety concerns arise regarding the investigational drug.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
危机的棒棒糖完成签到,获得积分10
刚刚
轻松招牌发布了新的文献求助10
刚刚
小不完成签到 ,获得积分10
刚刚
4秒前
zengyl发布了新的文献求助10
4秒前
4秒前
帅气的机器猫关注了科研通微信公众号
5秒前
6秒前
jewelliang发布了新的文献求助10
6秒前
情怀应助ZYT采纳,获得10
7秒前
西又木完成签到,获得积分10
7秒前
俭朴仇血完成签到,获得积分10
9秒前
10秒前
苏苏苏发布了新的文献求助30
10秒前
Qing发布了新的文献求助10
11秒前
万万完成签到 ,获得积分10
11秒前
11秒前
zengyl完成签到,获得积分10
11秒前
12秒前
14秒前
看火人发布了新的文献求助10
15秒前
醉熏的水绿完成签到 ,获得积分10
17秒前
mmm发布了新的文献求助10
18秒前
20秒前
哟呵完成签到,获得积分0
21秒前
科研通AI5应助苏苏苏采纳,获得10
23秒前
酷波er应助月如钩采纳,获得10
23秒前
jewelliang完成签到,获得积分10
26秒前
26秒前
28秒前
银河打工人应助新雨采纳,获得10
28秒前
bkagyin应助聪慧的诗兰采纳,获得10
30秒前
海北完成签到 ,获得积分10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得30
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
ding应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776338
求助须知:如何正确求助?哪些是违规求助? 3321773
关于积分的说明 10207718
捐赠科研通 3037092
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797578
科研通“疑难数据库(出版商)”最低求助积分说明 757870