Orbital hybridization induces fast photoelectron capture by graphene to promote high gain in transition metal dichalcogenide/graphene heterojunctions

石墨烯 异质结 过渡金属 材料科学 纳米技术 光电子学 化学 催化作用 生物化学
作者
Tingbo Zhang,Xinying Gao,Meiling Xu,Caoping Niu,Jingming Shi,Jian Hao,Xianghong Niu,Yinwei Li
出处
期刊:Physical review [American Physical Society]
卷期号:110 (24) 被引量:1
标识
DOI:10.1103/physrevb.110.245401
摘要

Transition metal dichalcogenide/graphene (TMDC/Gr) heterojunction devices exhibit significantly higher photoresponsivity compared to TMDC devices alone, making them promising for optoelectronic applications. However, experiments demonstrated that graphene cannot prolong the photogenerated carrier lifetime of TMDC/Gr heterojunctions and, further, that the high density of sulfur vacancies in TMDCs complicates photogenerated carrier dynamics, leaving the underlying physical mechanism behind the high photoresponsivity unclear. Herein, we investigate photogenerated carrier transfer and recombination of $\mathrm{Mo}{\mathrm{S}}_{2}$/Gr and $\mathrm{W}{\mathrm{S}}_{2}$/Gr heterojunctions through nonadiabatic molecular dynamics simulations. Instead of conventional speculation that sulfur vacancies of TMDCs store photogenerated carriers to enhance optoelectronic performance, we find that the hybridization between defect states of TMDC and Dirac points of graphene induces fast photoelectron transfer from TMDC to graphene, promoting high carrier gain in TMDC/Gr heterojunctions. Fast carrier transfer of heterojunctions derives from the excitation of low-frequency in-plane phonon modes. Meanwhile, graphene does not drastically reduce the photogenerated carrier lifetime of TMDC/Gr heterojunctions. Therefore, the faster photogenerated electrons transfer and long carrier lifetime lead to photogenerated carrier gain, resulting in superior optoelectronic performance of TMDC/Gr heterojunctions. This study provides a comprehensive understanding of photogenerated carrier dynamics in TMDC/Gr heterojunctions, laying the foundation for design of high-performance TMDC optoelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猪会爆炸完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
烤冷面应助科研通管家采纳,获得10
4秒前
满意硬币应助科研通管家采纳,获得30
4秒前
lilili应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
OU应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
guard发布了新的文献求助10
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Jasper应助喏晨采纳,获得10
4秒前
4秒前
lllyf发布了新的文献求助10
5秒前
传奇3应助yy采纳,获得10
5秒前
7秒前
8秒前
9秒前
遛遛完成签到 ,获得积分10
9秒前
xinyue发布了新的文献求助10
10秒前
10秒前
10秒前
winfan完成签到 ,获得积分10
11秒前
姜颖发布了新的文献求助20
13秒前
Jiakopa发布了新的文献求助10
13秒前
tanfor发布了新的文献求助10
14秒前
艺玲发布了新的文献求助10
14秒前
11发布了新的文献求助10
15秒前
Michelle完成签到 ,获得积分10
19秒前
香蕉觅云应助瑟吉欧采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300721
求助须知:如何正确求助?哪些是违规求助? 4448507
关于积分的说明 13846121
捐赠科研通 4334281
什么是DOI,文献DOI怎么找? 2379527
邀请新用户注册赠送积分活动 1374643
关于科研通互助平台的介绍 1340312