Development and validation of an explainable machine learning prediction model for futile recanalization after mechanical thrombectomy in acute large vessel occlusion stroke

医学 队列 冲程(发动机) 判别式 闭塞 人工智能 机器学习 外科 内科学 计算机科学 机械工程 工程类
作者
Yage Zhao,Xiaocui Wang,Yuehui Liu,Zhiliang Guo,Jie Hou,Huaishun Wang,Shuai Yu,Jiaping Xu,Junhao Du,Guodong Xiao
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-023106
标识
DOI:10.1136/jnis-2025-023106
摘要

Background Mechanical thrombectomy (MT) is the primary treatment for acute ischemic stroke (AIS) caused by large vessel occlusion (LVO). However, the likelihood of futile recanalization (FR) at 90 days post-MT remains high. Methods This study included 534 AIS patients with anterior circulation LVO who underwent MT, with the primary outcome being FR. The derivation cohort consisted of 445 patients (June 2018–June 2023), while the temporal validation cohort had 89 patients (July 2023–June 2024). The derivation cohort was split into 70% training and 30% internal validation sets. Eleven machine learning (ML) models were trained, tested, and compared, and the best-performing model was selected for optimization and temporal validation. SHapley Additive exPlanations (SHAP) were used for model interpretation. Results The CatBoost model showed the best discriminative ability among the 11 ML models. After feature selection and dimensionality reduction, a final explainable CatBoost model with 12 features was established, accurately predicting FR in both internal (area under the curve (AUC)=0.915) and temporal (AUC=0.930) validations. The model has been deployed as a web application for clinical use. Conclusion We developed a ML prediction model with 12 key features that demonstrates excellent performance in predicting FR. The deployment of this model as a web application offers a promising tool for clinicians to assess FR risk, potentially enhancing patient selection and improving personalized stroke care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
renwoxing完成签到,获得积分10
1秒前
2秒前
快乐二方完成签到 ,获得积分10
3秒前
风时因絮发布了新的文献求助10
4秒前
dandna完成签到 ,获得积分10
4秒前
bobo发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
英俊的铭应助碧蓝世界采纳,获得10
9秒前
哇哈哈发布了新的文献求助10
9秒前
10秒前
学术laji发布了新的文献求助10
10秒前
岛屿发布了新的文献求助10
10秒前
现代汽车发布了新的文献求助10
11秒前
科研通AI2S应助申申采纳,获得10
12秒前
12秒前
ly发布了新的文献求助10
12秒前
xmhxpz发布了新的文献求助10
15秒前
可爱的函函应助TIan采纳,获得30
16秒前
时尚俊驰发布了新的文献求助10
17秒前
陈住气完成签到,获得积分10
18秒前
18秒前
嘚嘚发布了新的文献求助20
18秒前
岛屿完成签到,获得积分20
19秒前
呜哇完成签到 ,获得积分10
22秒前
22秒前
22秒前
22秒前
23秒前
23秒前
思源应助哒哒猪采纳,获得10
24秒前
在水一方应助cc采纳,获得10
24秒前
胖大肚发布了新的文献求助10
24秒前
24秒前
Orange应助时尚俊驰采纳,获得10
25秒前
呜哇关注了科研通微信公众号
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787493
求助须知:如何正确求助?哪些是违规求助? 3333123
关于积分的说明 10259242
捐赠科研通 3048542
什么是DOI,文献DOI怎么找? 1673135
邀请新用户注册赠送积分活动 801699
科研通“疑难数据库(出版商)”最低求助积分说明 760324