Development and validation of an explainable machine learning prediction model for futile recanalization after mechanical thrombectomy in acute large vessel occlusion stroke

医学 队列 冲程(发动机) 判别式 闭塞 人工智能 机器学习 外科 内科学 计算机科学 机械工程 工程类
作者
Yage Zhao,Xiaocui Wang,Yuehui Liu,Zhiliang Guo,Jie Hou,Huaishun Wang,Shuai Yu,Jiaping Xu,Junhao Du,Guodong Xiao
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:: jnis-2025
标识
DOI:10.1136/jnis-2025-023106
摘要

Background Mechanical thrombectomy (MT) is the primary treatment for acute ischemic stroke (AIS) caused by large vessel occlusion (LVO). However, the likelihood of futile recanalization (FR) at 90 days post-MT remains high. Methods This study included 534 AIS patients with anterior circulation LVO who underwent MT, with the primary outcome being FR. The derivation cohort consisted of 445 patients (June 2018–June 2023), while the temporal validation cohort had 89 patients (July 2023–June 2024). The derivation cohort was split into 70% training and 30% internal validation sets. Eleven machine learning (ML) models were trained, tested, and compared, and the best-performing model was selected for optimization and temporal validation. SHapley Additive exPlanations (SHAP) were used for model interpretation. Results The CatBoost model showed the best discriminative ability among the 11 ML models. After feature selection and dimensionality reduction, a final explainable CatBoost model with 12 features was established, accurately predicting FR in both internal (area under the curve (AUC)=0.915) and temporal (AUC=0.930) validations. The model has been deployed as a web application for clinical use. Conclusion We developed a ML prediction model with 12 key features that demonstrates excellent performance in predicting FR. The deployment of this model as a web application offers a promising tool for clinicians to assess FR risk, potentially enhancing patient selection and improving personalized stroke care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助youyuguang采纳,获得10
刚刚
PhD_Essence发布了新的文献求助10
1秒前
刘果果发布了新的文献求助10
1秒前
coco234完成签到,获得积分10
1秒前
YifanWang应助shinn采纳,获得10
2秒前
化学兔子完成签到,获得积分10
2秒前
2秒前
玩命的绮晴完成签到,获得积分10
2秒前
2秒前
ljc完成签到,获得积分10
2秒前
粗暴的坤发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
6秒前
GSQ发布了新的文献求助10
6秒前
6秒前
xcc完成签到,获得积分10
7秒前
7秒前
李y梅子完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
蓝天发布了新的文献求助10
9秒前
一昂发布了新的文献求助10
10秒前
Akim应助老实雨莲采纳,获得10
10秒前
科研通AI6.1应助任一采纳,获得10
11秒前
YifanWang应助shinn采纳,获得10
11秒前
leo227发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
小马哥发布了新的文献求助10
12秒前
12秒前
橘子树发布了新的文献求助10
12秒前
Ho完成签到,获得积分10
12秒前
13秒前
欣慰的山竹完成签到,获得积分10
13秒前
Crystal完成签到,获得积分10
14秒前
为什么不学习完成签到,获得积分10
15秒前
今后应助demo采纳,获得10
16秒前
nana发布了新的文献求助30
16秒前
难过龙猫完成签到,获得积分10
16秒前
给好评发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5824082
求助须知:如何正确求助?哪些是违规求助? 6001021
关于积分的说明 15563223
捐赠科研通 4945010
什么是DOI,文献DOI怎么找? 2663952
邀请新用户注册赠送积分活动 1609942
关于科研通互助平台的介绍 1564762