Voice biomarkers as prognostic indicators for Parkinson’s disease using machine learning techniques

帕金森病 疾病 计算机科学 医学 机器学习 生物信息学 数据科学 内科学 生物
作者
Ifrah Naeem,Allah Ditta,Tehseen Mazhar,Muhammad Sajeel Anwar,Mamoon M. Saeed,Habib Hamam
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-96950-3
摘要

Many people suffer from Parkinson's disease globally, a complicated neurological condition caused by the deficiency of dopamine, an organic chemical responsible for regulating movement in individuals. Patients with Parkinson face muscle stiffness or rigidity, tremors, vocal impairment, slow movement, loss of facial expressions, and problems with balance and coordination. As there is no cure for Parkinson, early diagnosis can help prevent the progression of this disease. The study explores the potential of vocal measures as significant indicators for early prediction of Parkinson. Different machine learning models such as Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), and Decision Tree (DT) are used to detect Parkinson using voice measures and differentiate between the healthy and Parkinson patients. The dataset contains 195 vocal recordings from 31 patients. The Synthetic Minority Over-Sampling Technique (SMOTE) is used for handling class imbalance to improve the performance of the models. The Principal Component Analysis (PCA) method was used for feature selection. The study uses different parameters to evaluate the model's classification results. The results highlight RF as the most effective model with an accuracy of 94% and a precision of 94%. In addition, SVM achieves an accuracy score of 92%, and precision of 91%. However, with the PCA method, SVM achieves an accuracy of 89%, 92%, and 87% for RF and DT respectively. This study highlights the significance of using vocal features along with advanced machine learning methods to reliably diagnose Parkinson's disease, considering the challenges associated with early detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
bhappy21完成签到,获得积分10
刚刚
小二郎应助吴辰阳采纳,获得10
1秒前
1秒前
1秒前
万能图书馆应助TCC采纳,获得10
1秒前
牛人发布了新的文献求助10
2秒前
随堂测验关注了科研通微信公众号
2秒前
小马甲应助隐形的傲易采纳,获得10
2秒前
柒月完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
QQ发布了新的文献求助30
3秒前
4秒前
4秒前
认真的灵竹完成签到 ,获得积分10
4秒前
沉静的代芹完成签到,获得积分10
5秒前
pzh发布了新的文献求助10
5秒前
5秒前
乐乐应助安澜采纳,获得30
5秒前
pcykyt发布了新的文献求助10
5秒前
5秒前
852应助pjmwj采纳,获得10
6秒前
6秒前
Yue_David完成签到,获得积分10
6秒前
毛豆爸爸发布了新的文献求助10
6秒前
镜中男人完成签到,获得积分10
6秒前
tianliyan发布了新的文献求助10
7秒前
JOEEVE发布了新的文献求助10
8秒前
浅碎时光完成签到,获得积分10
8秒前
cc关注了科研通微信公众号
8秒前
8秒前
科研小崩豆完成签到,获得积分10
9秒前
9秒前
polysaccharide完成签到,获得积分20
9秒前
Hello应助典雅的俊驰采纳,获得10
9秒前
花影发布了新的文献求助10
9秒前
9秒前
小邓巴完成签到,获得积分10
9秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809611
求助须知:如何正确求助?哪些是违规求助? 3354164
关于积分的说明 10368918
捐赠科研通 3070418
什么是DOI,文献DOI怎么找? 1686244
邀请新用户注册赠送积分活动 810863
科研通“疑难数据库(出版商)”最低求助积分说明 766396